Solid-Solution Mechanism of Aluminum and Hydrogen in Stishovite

스티쇼바이트에 고용하는 알루미늄과 수소와의 관계

  • 정정인 (공주대학교 과학연구소) ;
  • 김희수 (공주대학교 지구과학 교육과)
  • Published : 2003.09.01

Abstract

Stishovite was synthesized from hydrous basaltic starting materials at 10∼15 ㎬ and $1000∼1400^{\circ}C$. Water content of synthetic stishovite has been determined, and solid solution mechanism of $H_2$ and Al in stishovite was investigated. The maximum water content obtained from stishovite single crystal was up to $844\pm$44 ppm $H_2$O. The concentration of hydrogen increased with increasing substitution of trivalent cation, mainly Al. The temperature effect on the hydrogen content in stishovite is more sensitive than that on any other impurities. Among the nominally anhydrous mantle-minerals, stishovite could be an important water-containing phase and contribute to the transportation of $H_2$O to lower mantle.

본 연구에서는 10∼15 ㎬의 압력, $1000∼1400 ^{\circ}C$의 온도 조건에서 함수 현무암질 물질로부터 합성된 스티쇼바이트의 함수량을 결정하였고, 스티쇼바이트에 고용하는 알루미늄과 수소와의 치환 메커니즘을 고찰하였다. 단결정 스티쇼바이트의 최대 함수량은 $844\pm$44 ppm $H_2$O이며, 수소 고용은 3가이온(주로 알루미늄)에 비례하여 증가하며, 다른 원소들보다 온도에 민감하다. 이러한 결과는 무수광물 중에서 스티쇼바이트는 중요한 함수상임을 시사하며, 하부맨틀로 물을 수송하는 중요한 운반매체 역할을 한다고 판단된다.

Keywords

References

  1. Andrault, D.G., Guyot, F.F., and Hanfland, M. (1998) Pressure-in Landau-type transition in stishovite, Science, 282, 720-724.
  2. N. B-Casanova, Keppler, H., and Rubie, D.C. (2000) Water partitioning between nominally anhydrous minerals in the $MgO-SiO_2-H_2O$ system up to 24 GPa: implications for the distribution of water in the Earth's mantle, Earth Planet. Sci. Lett., 182, 209-221.
  3. Chung, J.I. and Kagi, H. (2002) High concentration of water in stishovite in the MORB system, Geophs. Res. Lett. 29(21), 2020, doi:10.1029/2002GL015579.
  4. Iriune, T. and Ringwood, A.E. (1993) Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600-800 km in the mantle, Earth Planet. Sci. Lett., 117, 101-110.
  5. Libowitzky, E. and Rossman, G.R. (1996) Principles of quantitative absorbance measurements in anisotropic crystals, Phys. Chem. Minerals, 23, 319-327.
  6. Mosenfelder, J.L. (2000) Pressure dependence of hydroxyl solubility in coesite, Phys. Chem. Minerals, 27, 610-617.
  7. M. Murakami, Hirose, K. Yurimoto, H. Nakashima, S., and Taka N. (2002) Water in earth's lower mantle, Science, 295, 1885-1887.
  8. K. Nakamoto, Margoshes, M., and Rundle, R.E. (1955) Stretching frequencies as a funtion of distances in hydrogen bonds. J. Amer. Chem. Soc., 77, 6480-6486.
  9. Ono, S. (1999) High temperature stability limit of phase egg, AlSiO3(OH), Contrib. Mineral. Petrol., 137, 83-89.
  10. Paterson, M. S. (1982) The determination of hydroxyl by infrared absorption quartz silicate glasses and similar materials, Bull. Mineral., 105, 20-29.
  11. Pawley, A.R., McMillan, P.F., and Holloway, J.R. (1993) Hydrogen in stishovite with implications for mantle water content, Science, 261, 1024-1026.
  12. Ross, N.L., Shu, J.-F., and Hazen, R.M. (1990) Highpressure crystal chemistry of stishovite, Am. Mineral. 75, 739-747.
  13. Rossman, G. R. (1996) Studies of OH in nominally anhydrous minerals, Phys. Chem. Minerals, 23, 299-304.
  14. Rossman, G.R. and Smyth, J.R. (1990) Hydroxyl contents of accessory minerals in mantle eclogites and related rocks, Am. Mineral. 75, 775-780.
  15. Smyth, J. R. (1994) A crystallographic model for hydrous wadsleyite($\beta$-Mg$_2$SiO$_4$): An ocean in the Earth's interior? Am. Mineral., 79, 1021-1024.
  16. Stolper, E. (1982) Water in Silicate Glasses: An infrared spectroscopic study, Contrib. Mineral. Petrol., 81, 1-17.
  17. Vlassopoulos, D., Rossman, G. R., and Haggerty, S. E. (1993) Coupled substitution of H and minor elements in rutile and the implications of high OH contents in Nb- and Cr-rich rutile from the upper mantle, Am. Mineral., 78, 1181-1191.