Development of Recombinant Chinese Hamster Ovary Cell Lines Producing Human Thrombopoietin or Its Analog

  • Chung, Joo-Young (Department of Biological Sciences, Korea Advanced Institute of Science and Technology, R&D Center, Daewoong Co. Ltd.) ;
  • Ahn, Hae-Kyung (R&D Center, Daewoong Co. Ltd.) ;
  • Lim, Seung-Wook (R&D Center, Daewoong Co. Ltd.) ;
  • Sung, Yun-Hee (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Koh, Yeo-Wook (R&D Center, Daewoong Co. Ltd.) ;
  • Park, Seung-Kook (R&D Center, Daewoong Co. Ltd.) ;
  • Lee, Gyun-Min (Department of Biological Sciences, Korea Advanced Institute of Science and Technology)
  • Published : 2003.10.01

Abstract

Recombinant Chinese hamster ovary (rCHO) cell lines expressing a high level of human thrombopoietin (hTPO) or its analog, TPO33r, were obtained by transfecting expression vectors into dihydrofolate reductase-deficient (dhfr) CHO cells and subsequent gene amplification in media containing stepwise increments in methotrexate (MTX) level such as 20, 80, and 320 nM. The parental clones with a hTPO expression level $>0.40\;{\mu}g/ml$ (27 out of 1,200 clones) and the parental clones with a TPO33r expression level $>0.20\;{\mu}g/ml$ (36 out of 400 clones) were subjected to 20 nM MTX. The clones that displayed an increased expression level at 20 nM MTX were subjected to stepwise increasing levels of MTX such as 80 and 320 nM. When subjected to 320 nM MTX, most clones did not display an increased expression level, since the detrimental effect of gene amplification on growth reduction outweighed its beneficial effect of specific TPO productivity ($q_{TPO}$) enhancement at 320 nM MTX. Accordingly, the highest producer subclones ($1-434-80^{*}$ for hTPO and $2-3-80^{*}$ for TPO33r), whose $q_{TPO}$ was 2- to 3-fold higher than that of their parental clones selected at 80 nM MTX, were isolated by limiting dilution method and were established as rCHO cel1 lines. The $q_{TPO}$ of $1-434-80^{*}\;and\;2-3-80^{*}\;was\;5.89{\pm}074\;and\;1.02{\pm}0.23\;{\mu}g/10^6$ cells/day, respectively. Southern and Northern blot analyses showed that the enhanced $q_{TPO}$ of established rCHO cell lines resulted mainly from the increased TPO gene copy number and subsequent increased TPO mRNA level. The hTPO and TPO33r produced from the established rCHO cell lines were biologically active in vivo, as demonstrated by their ability to elevate platelet counts in treated mice.

Keywords

References

  1. Cell v.77 Identification and cloning of a megakaryocyte growth and development factor that is a ligand for the cytokine receptor Mpl Bartley,T.D.;J.Bogenberger;P.Hunt;Y.S.Li;H.S.Lu;F.Martin;M.S.Chang;B.Samal;J.L.Nichol;S.Swift;M.J.Johnson;R.Y.Hsu;V.P.Parker;S.Suggs;J.D.Skrine;L.A.Merewether;C.Clogston;E.Hsu;M.M.Hokom;A.Hornkohl;E.Choi;M.Pangelinan;Y.Sun;V.Mar;J.Mcninch;L.Simonet;F.Jacobsen;C.Xie;J.Shutter;H.Chute;R.Basu;L.Selander;D.Trollinger;L.Sieu;D.Padilla;G.Trail;G.Elliott;R.Izumi;T.Covey;J.Crouse;A.Garcia;W.Xu;J.Del Castillo;J.Biron;S.Cole;M.C.T.Hu;R.Pacifici;I.Ponting;C.Saris;D.Wen;Y.P.Yung;H.Lin;R.A.Bosselman https://doi.org/10.1016/0092-8674(94)90450-2
  2. J. Microbiol. Biotechnol. v.12 Screening of high-productivity cell lines and investigation of their physiology in Chinese hamster ovary (CHO) cell cultures for transforming growth factor-beta 1 production Chun,G.T.;J.B.Lee;S.U.Nam;S.W.Lee;Y.H.Jeong;E.Y.Choi;I.H.Kim;Y.S.Jeong;P.H.Kim
  3. Biotechniques v.29 Morphological selection of parental Chinese hamster ovary cell clones exhibiting high-level expression of recombinant protein Chung,J.Y.;T.K.Kim;G.M.Lee
  4. Trends. Biotechnol. v.13 Cell death (apoptosis) in cell culture systems Cotter,T.G.;M.Al-Rubeai https://doi.org/10.1016/S0167-7799(00)88926-X
  5. Nature v.369 Stimulation of megakaryocytopoiesis and thrombopoiesis by the c-Mpl ligand de Sauvage,F.J.;P.E.Hass;S.D.Spencer;B.E.Malloy;A.L.Gurney;S.A.Spencer;W.C.Darbonne;W.J.Henzel;S.C.Wong;W.J.Kuang;K.J.Oles;B.Hultgren;L.A.Solberg Jr.;D.R.Goeddel;D.L.Eaton https://doi.org/10.1038/369533a0
  6. Curr. Opin. Hematol. v.2 Thrombopoietin and the humoral regulation of thrombocytopoiesis Eaton,D.L.;F.J.de Sauvage https://doi.org/10.1097/00062752-199502030-00002
  7. Br. J. Cancer v.84 Development and characterization of novel erythropoiesis stimulating protein (NESP) Egrie,J.C.;J.K.Browne https://doi.org/10.1054/bjoc.2001.1746
  8. Cytotechnology v.9 Effect of amplification of dhfr and lacZ genes on growth and β-galactosidase expression in suspension cultures of recombinant DHO cells Gu,M.B.;J.A.Kern;P.Todd;D.S.Kompala https://doi.org/10.1007/BF02521751
  9. Ann. N. Y. Acad. Sci. v.721 Analysis of foreign protein overproduction in recombinant CHO cells. Effect of growth kinetics and cell cycle traverse Gu,M.B.;P.Todd;D.S.Kompala https://doi.org/10.1111/j.1749-6632.1994.tb47392.x
  10. Science v.265 Thrombocytopenia in c-mpl-deficient mice Gurney,A.L.;K.Carver-Moore;F.J.de Sauvage;M.W.Moore https://doi.org/10.1126/science.8073287
  11. Biochemistry v.35 Peptide, disulfide and glycosylation mapping of recombinant human thrombopoietin from ser1 to Arg246 Hoffman,R.C.;H.Andersen;K.Walker;J.D.Krakover;S.Patel;M.R.Stamm;S.G.Osborn https://doi.org/10.1021/bi961075b
  12. Bio/Technology v.13 N-glycosylation of recombinant human interferon-gamma produced in different animal expression systems James,D.C.;R.B.Freedman;M.Hoare;O.W.Ogonah;B.C.Rooney;O.A.Larionov;V.N.Dobrovolsky;O.V.Lagutin;N.Jenkins https://doi.org/10.1038/nbt0695-592
  13. Nat. Biotechnol. v.14 Getting the glycosylation right: Implications for the biotechnology industry Jenkins,N.;R.B.Parekh;D.C.James https://doi.org/10.1038/nbt0896-975
  14. Protein Expres. Purif. v.18 Expression, purification and characterization of human recombinant thrombopoietin in Chinese hamster ovary cells Kaszubska,W.;H.Y.Zhang;R.L.Patterson;T.S.Suhar;M.E.Uchic;R.W.Dickinson;V.G.Schaefer;D.Haasch;R.S.Janis;P.J.DeVries;G.F.Okasinski;J.L.Meuth https://doi.org/10.1006/prep.1999.1190
  15. Stem Cells v.16 Native thrombopoietin: Structure and function Kato,T.;A.Matsumoto;K.Ogami;T.Tahara;H.Miyazaki https://doi.org/10.1002/stem.160322
  16. Mol. Cell. Biol. v.5 Coamplification and coexpression of human tissue-type plasminogen activator and murine dihydrofolate reductase sequences in Chinese hamster ovary cells Kaufman,R.J.;L.C.Wasley;A.J.Spiliotes;S.D.Gossels;S.A.Latt;G.R.Larsen;R.M.Kay
  17. Nature v.369 Promotion of megakaryocyte progenitor expansion and differentiation by the c-Mpl ligand thrombopoietin Kaushansky,K.;S.Lok;R.D.Holly;V.C.Broudy;N.Lin;M.C.Bailey;J.W.Forstrom;M.M.Buddle;P.J.Oort;F.S.Hagen;G.J.Roth;T.Papayannopoulou;D.C.Foster https://doi.org/10.1038/369568a0
  18. Biotechnol. Bioeng. v.60 Clonal variability within dihydrofolate reductase-mediated gene amplified Chinese hamster ovary cells: Stability in the absence of selective pressure Kim,N.S.;S.J.Kim;G.M.Lee https://doi.org/10.1002/(SICI)1097-0290(19981220)60:6<679::AID-BIT5>3.0.CO;2-Q
  19. Biotechnol. Prog. v.17 Key determinants in the occurrence of clonal variation in humanized antibody expression of CHO cells during dihydrofolate reductase mediated gene amplification Kim,N.S.;T.H.Byun;G.M.Lee https://doi.org/10.1021/bp000144h
  20. Biotechnol. Bioeng. v.58 Characterization of chimeric antibody producing CHO cells in the course of dihydrofolate reductase-mediated gene amplification and their stability in the absence of selective pressure Kim,S.J.;N.S.Kim;C.J.Ryu;H.J.Hong;G.M.Lee https://doi.org/10.1002/(SICI)1097-0290(19980405)58:1<73::AID-BIT8>3.0.CO;2-R
  21. Biotechnol. Bioeng. v.38 Production of monoclonal antibody using free-suspended and immobilized hybridoma cells: Effect of serum Lee,G.M.;A.Varma;B.O.Palsson https://doi.org/10.1002/bit.260380804
  22. J. Microbiol. Biotechnol. v.12 Enhancement of tissue type plasminogen activator(tPA) production from recombinant CHO cells by low electromagnetic fields Lee,S.H.;H.S.Lee;M.K.Lee;J.H.Lee;J.D.Kim;Y.S.Park;S.Y.Lee;H.Y.Lee
  23. Nucleic Acids. Res. v.24 High-level production of recombinant proteins in CHO cells using a dicistronic DHFR intron expression vector Lucas,B.K.;L.M.Giere;R.A.DeMarco;A.Shen;V.Chisholm;C.W.Crowley https://doi.org/10.1093/nar/24.9.1774
  24. Bio/Technology v.9 High level expression of the humanized monoclonal antibody Campath-1H in chinese hamster ovary cells Page,M.J.;M.A.Sydenham https://doi.org/10.1038/nbt0191-64
  25. Biotechnol. Bioeng. v.40 Effect of cloned gene dosage on cell growth and Hepatitis B surface antigen synthesis and secretion in recombinant CHO cells Pendse,G.J.;S.Karkare;J.E.Bailey https://doi.org/10.1002/bit.260400117
  26. Biotechnol. Bioeng. v.53 Overexpression of recombinant human antithrombin III in Chinese hamster ovary cells results in malformation and decreased secretion of recombinant protein Schroder,M.;P.Friedl https://doi.org/10.1002/(SICI)1097-0290(19970320)53:6<547::AID-BIT2>3.0.CO;2-M
  27. Proc. Natl. Acad. Sci. USA v.77 Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity Urlaub.G.;L.A.Chasin https://doi.org/10.1073/pnas.77.7.4216
  28. Nature v.369 c-Mpl ligand is a humoral regulator of megakaryocytopoiesis Wendling,F.;E.Maraskovsky;N.Debili;C.Florindo;M.Teepe;M.Titeux;N.Methia;J.Breton-Gorius;D.Cosman;W.Vainchenker https://doi.org/10.1038/369571a0
  29. Biologicals v.18 Integration, amplification and stability of plasmid sequences in CHO cell cultures Wurm,F.M. https://doi.org/10.1016/1045-1056(90)90002-H