Effects of Xylose Reductase Activity on Xylitol Production in Two-Substrate Fermentation of Recombinant Saccharomyces cerevisiae

  • Lee, Woo-Jong (Department of Agricultural Biotechnology, Seoul National University) ;
  • Kim, Myoung-Dong (Department of Agricultural Biotechnology, Seoul National University) ;
  • Yoo, Myung-Sang (Department of Agricultural Biotechnology, Seoul National University) ;
  • Ryu, Yeon-Woo (Department of Molecular Science and Technology, Ajou University) ;
  • Seo, Jin-Ho (Department of Agricultural Biotechnology, Seoul National University)
  • Published : 2003.10.01

Abstract

Three recombinant Saccharomyces cerevisiae strains showing different levels of xylose reductase activity were constructed to investigate the effects of xylose reductase activity and glucose feed rate on xylitol production. Conversion of xylose to xylitol is catalyzed by xylose reductase of Pichia stipitis with cofactor NAD(P)H. A two-substrate fermentation strategy has been employed where glucose is used as an energy source for NADPH regeneration and xylose as substrate for xylitol production. All recombinant S. cerevisiae strains Yielded similar specific xylitol productivity, indicating that xylitol production in the recombinant S. cerevisiae was more profoundly affected by the glucose supply and concomitant It generation of cofactor than the xylose reductase activity itself. It was confirmed in a continuous culture that the elevation of the glucose feeding level in the xylose-conversion period enhanced the xylitol productivity in the recombinant S. cerevisiae.

Keywords

References

  1. Yeast v.9 A series of yeast shuttle vectors for expression of cDNAs and other DNA sequences Brunelli,J.P.;M.L.Pall https://doi.org/10.1002/yea.320091203
  2. Biotechnol. Bioprocess. Eng. v.5 Application of a compatible xylose isomerase in simultaneous bioconversion of glucose and xylose to ethanol Chandrakant,P.;V.S.Bisaria https://doi.org/10.1007/BF02932350
  3. Biotechnol. Lett. v.22 Production of xylitol in cell recycle fermentation of Candida tropicalis Choi,J.H.;K.H.Moon;Y.W.Ryu;J.H.Seo https://doi.org/10.1023/A:1005693427389
  4. Enz. Microb. Technol. v.30 Stable expression of xylose reductase enhances xylitol production in recombinant Saccharomyces cerevisiae Chung,Y.S.;M.D.Kim;Y.W.Ryu;J.H.Kim;J.H.Seo https://doi.org/10.1016/S0141-0229(02)00062-5
  5. Plant. Sci. Lett. v.1 Contribution of the pentose-phosphate pathway to glucose metabolism in Saccharomyces cerevisiae: A critical analysis on the use of labeled glucose Gancedo,J.M.;R.Lagunas https://doi.org/10.1016/0304-4211(73)90044-8
  6. Appl. Microbiol. Biotechnol. v.55 Xylito production by recombinant Saccharomyces cerevisiae expressing the Pichia stipitis and Candida shehatae XYL1 gene Govinden,R.;B.Pillay;W.H.van Zyl;D.Pillay https://doi.org/10.1007/s002530000455
  7. Appl. Microbiol. Biotechnol. v.42 The influence of cosubstrate and aeration on xylitol formation by recombinant Saccharomyces cerevisiae expressing the XYL1 gene Hallborn,J.;M.F.Gorwa;N.Meinander;M.Penttila;S.Keranen;B.Hahn-Hagerdal
  8. Adv. Food Res. v.28 Food technological evaluation of xylitol Hyvonen,L.;P.Koivistoinen;F.Voirol
  9. J. Microbiol. Biotechnol. v.11 High-yield production of xylitol from xylose by a xylitol dehydrogenase defective mutant of Pichia stipitis Kim,M.S.;Y.S.Chung;J.H.Seo;D.H.Jo;Y.H.Park;Y.W.Ryu
  10. J. Ind. Microbiol. Biotechnol. v.29 Optimization of fed-batch fermentation for xylitol production by Candida tropicalis Kom,J.H.;K.C.Han;Y.H.Koh;Y.W.Ryu;J.H.Seo https://doi.org/10.1038/sj.jim.7000257
  11. Biotechnol. Lett. v.19 Fermentation of D-xylose by free and immobilized Saccharomyces cerevisiae Lebeau,T.;T.Jouenne;G.A.Junter https://doi.org/10.1023/A:1018322311552
  12. J. Microbiol. Biotechnol. v.11 Estimation of theoretical yield for ethanol production from D-xylose by recombinant Saccharomyces cerevisiae using metabolic pathway synthesis alogorithm Lee,T.H.;M.Y.Kim;Y.W.Ryu;J.H.Seo
  13. Process Biochem. v.35 Characterization of two-substrate fermentation processes for xylitol production using recombinant Saccharomyces cerevisiae containg xylose reductase Lee,W.J.;Y.W.Ryu;J.H.Seo https://doi.org/10.1016/S0032-9592(00)00165-5
  14. Appl. Microbiol. Biotechnol. v.42 Fed-batch xylitol production with recombinant XYL1-expressing Saccharomyces cerevisiae using ethanol as a co-substrate Meinander,N.;B.Hahn-Hagerdal
  15. Biotechnol. Bioeng. v.54 Fed-batch xylitol production with two recombinant Saccharomyces cerevisiae strains expressing XYL1 at different levels, using glucose as a cosubstrate: A comparison of production parameters and strain stability Meinander,N.Q.;B.Hahn-Hagerdal https://doi.org/10.1002/(SICI)1097-0290(19970520)54:4<391::AID-BIT12>3.0.CO;2-J
  16. Process Biochem. v.30 Processes for fermentative production of xylitol-a sugar substitute Nigan,P.;D.Singh
  17. Biotech. Bioeng. v.39 Design and evaluation of control strategies for high cell density fermentations O'connor,G.M.;F.Sanchez-Riera;C.L.Cooney https://doi.org/10.1002/bit.260390307
  18. Food Technol. v.10 Xylitol in sugar-free confections Pepper,T.;P.M.Olinger
  19. Meth. Enzymol. v.185 Expression of heterologous proteins in Saccharomyces cerevisiae using the ADH2 promoter Price,V.L.;W.E.Taylor;W.Clevenger;M.Worthington;E.T.Young https://doi.org/10.1016/0076-6879(90)85027-L
  20. Appl. Microbiol. Biotechnol. v.29 Xylose fermentation by yeasts: Purification and kinetic studies of xylose reductase from Pichia stipitis Rizzi,M.;P.Erlemenn;N.A.Bui-Thanh;H.Dellweg https://doi.org/10.1007/BF00939299
  21. Molecular Cloning: A Laboratory Manual(2nd ed.) Sambrook,J.;E.F.Fritsch;T.Maniatis
  22. J. Microbiol. Biotechnol. v.11 Purification and characterization of a regulatory protein XylR in the D-xylose operon from Escherichia coli Shin,J.H.;D.H.Roh;G.Y.Heo;G.J.Joo;I.K.Rhee
  23. Kor. J. Appl. Microbiol. Biotechnol. v.25 Xylitol production from xylose and glucose by Candida tropicalis Oh,D.K.;S.Y.Kim
  24. Proc. Natl. Acad. Sci. USA v.76 High-frequency transformation of yeast Saccharomyces cerevisiae: Autonomous replication of hybrid DNA molecules Struhl,K.;D.T.Stinchcomb;S.Scherer;R.W.Davis https://doi.org/10.1073/pnas.76.3.1035
  25. Appl. Microbiol. Biotechnol. v.48 Expression of different levels of enzymes from Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilization Walfridsson,M.;M.Anderlund;X.Bao;B.Hahn-Hagerdal https://doi.org/10.1007/s002530051041
  26. Appl. Microbiol. Biotechnol. v.30 Inhibitors of xylose reductase from the yeast Pichia stipitis Webb,S.R.;H.Lee https://doi.org/10.1007/BF00296618