DOI QR코드

DOI QR Code

ANALYTICITY FOR THE STOKES OPERATOR IN BESOV SPACES

  • Published : 2003.11.01

Abstract

We first show the analyticity of Stokes operator in Besov spaces $B_{p,q}$$^{a}$ ( $R_{+}$$^{n}$). Then, we estimate the asymptotic behavior of the Stokes solutions. We also show the Hodge decomposition.n.

Keywords

References

  1. Decays in $L^{1}$and $L^{\infty}$ spaces for the Stokes flow H.O.Bae
  2. Math. Z. v.238 no.4 Decay rates for the incompressible flows in half spaces H.O.Bae;H.J.Choe
  3. Math. Ann. v.282 L² decay rate for the Navier-Stokes flow in half spaces W.Borchers;T.Miyakawa https://doi.org/10.1007/BF01457017
  4. Acta Math. v.63 Sur le Mouvement d'un liquide visqueux emplissant l'espace J.Leray https://doi.org/10.1007/BF02547354
  5. Appl. Math. Sci. v.44 Semigroups of linear operators and applications to partial differential equations A.Pazy
  6. J. Amer. Math. Soc. v.4 no.3 Lower bounds of rates of decay for solutions to the Navier-Stokes equations M.E.Schonbek https://doi.org/10.2307/2939262
  7. Monogr. Math. v.78 Theory of Function Spaces H.Triebel
  8. Comm. Pure Appl. Math. v.XL A solution formula for the Stokes equation in $R^n_+$ S.Ukai
  9. J. London Math. Soc. v.35 Decay results for weak solutions of the Navier-Stokes equations in $R^n$ M.Wiegner https://doi.org/10.1112/jlms/s2-35.2.303

Cited by

  1. Constraint-induced restriction and extension operators with applications vol.30, pp.11, 2009, https://doi.org/10.1007/s10483-009-1101-x