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ANALYTICITY FOR THE STOKES
OPERATOR IN BESOV SPACES

HYEONG-OHK BAE

ABSTRACT. We first show the analyticity of Stokes operator in
Besov spaces By ,(R%). Then, we estimate the asymptotic behavior
of the Stokes solutions. We also show the Hodge decomposition.

1. Introduction

We consider the Stokes equations in the half spaces:
u; — Au+ Vp =0, in]Rix(O,oo),
V-u=0, in RY x (0, 00),
u(z,0) = uyg, for v € ]R‘:’L,
u(z,t) =0, for z3 =0, t € (0,00).

(1.1)

Here, Ri = {z € R : 2 = (%,23) = (z1,%2,73),23 > 0} is the
upper half space of R3, and ug is given initial data. The velocity
u = (u,ug,us), and the pressure p are unknown. This paper con-
sists of three parts. We first estimate the solutions in Besov spaces to
show the analyticity of the semigroup generated by the Stokes operator.
Secondly, we estimate the decay rates of the Stokes solutions, finally we
show the Hodge decomposition.

In the first part, we show the semigroup obtained by the Stokes so-
lutions on R? is analytic in Besov spaces in time. From Theorem 5.2 in
Pazy [5], it is enough to check that the semigroup 7T'(t) generated by the
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Stokes operator is uniformly bounded C° semigroup, and T'(t) is differ-
entiable for ¢ > 0 and there is a constant C such that ||AT'(¢)|| < C/t
for t > 0.

Let P, , denote the projection operator

Ppa  Bpa(RY) = Bpg (RY),

where B2, and Bpg will be defined later. In Section 5, we show the
projection operator Py, is bounded. In Sections 3, we show the operator
—~A% := —P2 A generates an analytic semigroup. Since (A + .A%)7!
depends analytically on \, if (A + .A%)~1 exists for all A = |\|e?? with
6 < m, then, given 8 with |A\| > 0 and |8] < 6y < 7, we will have
(X + A2) 7Y < (1/]A])Ca(B), where Cy(6p) depends on only a and 6.

In the second part, we estimate the asymptotic behavior of the solu-
tions for the nonstationary Stokes equations (1.1). The decay problems
are studied by many authors, for example, Leray [4], Schonbek [6], Wieg-
ner [9], Borchers and Miyakawa [3], Bae and Choe [2], and Bae[1]. In
Section 4 we study the decay rate in Besov space.

2. Besov spaces

We review the definitions of Besov spaces in Triebel [7].

DEFINITION 1. Let ®(R™) be the collection of all systems ¢ =
{‘Pj(l‘)}?';o C S(R™) such that

2.1) supp o C {z : |z| < 2},

’ supp @; C {z: 271 < || <27t} ifj=1,2,3,...,

for every multi-index « there exists a positive number ¢, such that
2jla||Da<pj(x)l <ecq forallj=0,1,2,... and all z € R"

and

o
Z(pj(x) =1 forallz e R™
§=0

Here, S(R™) denotes the Schwartz space on R™.
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DEFINITION 2. Let —co < a < ocand 0 < g < o0o. Let ¢ = {goj};??__o €
®(R™). Then, for 0 < p < o0,

By (R™) = {f € S'R™) : | fll B2 ,(r")

= [ (217 s Dllan) ] < oo,

J=0

where §'(R™) denotes the space of tempered distributions on R", and F,
F~! denote the Fourier and the inverse Fourier transforms, respectively.
For q = o0,

171Bs @) = sup (2| F (@5 F )l Lo@n))-
J

Let N be a natural number. Denote ||m|n by

(2.2) Imln == sup sup [¢]"*!|D*m(¢)],
|| <N EeR™

where D% := (8/9&1)* - - - (8/0€,)*", and |a| = a1 + - - - + ap. Then the
following theorem is given in Triebel [7].

THEOREM 2.1. Let —co<a< o and 0<g<ooand 0 <p < oo. If
N is sufficiently large, then there exists a positive number ¢ such that
|F - mF flips @y < cllm|| vl fll g, @)
holds for all infinitely differentiable functions m and all f € B, (R™).

DEFINITION 3. Let —co < a < oc and 0 < p,q < co. Then, By (R%})
is the collection of all restrictions of functions in Bj (R"). If f is the
restriction of g on R?, its norm is defined by

£l Ba ,(r7) = inf l|gl|pa _(rn),

where the infimum is to be taken over all g with giRi = f.

3. Analyticity of the Stokes operator

In this section we show the semigroup obtained by the Stokes so-
lutions on R7 is analytic in Besov spaces in time. From Theorem 5.2
in Pazy [5], it is enough to check that (1) the semigroup T'(¢) gener-
ated by the Stokes operator is uniformly bounded C° semigroup, and
(2) T'(t) is differentiable for ¢ > 0 and (3) there is a constant C such
that ||AT(t)|| < C/t for t > 0.
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We adopt the solution formula of the Stokes equations in R} given
by Ukai [8]. We review the formula. Setting ¢; = F'p;, we have
f‘lgojff = ¢; * f. We denote Z := (z1,...,Zp-1) € R* 1 and z =
(Z,2n) € R}. We denote by K(Z,z,,t) the heat kernel in the whole
space R",

1212 _|zn)?

Ki(z) = Ky(Z, zp) := (dmt) ™2 ar e~ a1

Then the solution v(z, t) of heat equation v;— Av = 0 with the boundary
condition v(Z,0,t) = 0,¢ > 0 and the initial condition v(z,0) = g(x) in
the half space R’} has a potential expression

B(0)s(a) = vy(at) == | (Kel@—5a0=)
— Ki(Z—7, 2n+yn)) 9(y) dy-

Denote by the Riesz’ operators, R;, j = 1,...,n, and §j, j =
1,...,n — 1, which are the singular integral operators with the symbols

o(R;) =1/l€l,  j=1,...,nm,

U(Sj)=ifj/l£|, jzl,...,n—l,
where &€ = (£1,...,&) = (£,&) € R*! x R is the dual variable to
x € R™. Then, the Riesz transform R; are defined in R™ by

Rif(@) =pv. | Ria=)f)dy
where p.v. means the principal value of the integral and
1
Rj(z) = caz;/|z|"tY, = 21—n/2\/7?r(5(n —-1)).

Here, I' is the gamma function. The Riesz transform S; are defined
similarly,

5if@ =v. [ S@-0)f@)ds,

where S;(z) = cp—12;/|Z|". Set
R=(R1,Rs,...,Rn-1), S = (81,52, ...,5.-1),
and define the operators V1 and V3 by

Viug = =S - Gg + uon,

Vaug = g + Suo,n,



The Stokes flow 1065

where ug = (ug,1,%0,2; - - -, %0,n) = (89, up,n). Furthermore, let i be the
restriction operator from R™ to R, that is,
hf = flrz,

and e the extension operator from R} over R™ with value 0:

ef:{f for z, > 0,

0 for z, < 0.
We also define the operator U by
Uf=hR-S(R-S+ Ry)ef.
By Ukai [8], the solution u of (1.1) is represented as

un, = UE(t)Viuy,
u= E(t)VgUQ - SUE(t)VluO

Consider the Riesz operator S:

(/Rn |]:—1("(5y‘)<pkff)(m)|pdx> 1/p

(L
< o( /R ) |f‘1(sokff)(x)|’”dx> v

by the Calderon-Zygmund inequality. Therefore, the Riesz’ operators R
and S are bounded on Bj (R}) for 1 < p < oo.

1/p
Tj—Yj _ P
/R Rt R l(sokff)(y,xn)dy’ dw)

no1 |2 — g

THEOREM 3.1. Let vy be the solution of the heat equation with initial
data g. Assume that 1 <r <p < o0, 0<g< 0 and -0 < a < 00.
Then, we have that for all t > 0,

—nel 1
log(-, )l s myy < CA+)725 %) ||gll e mry.

Furthermore, if g belongs to B (R} ) for 0 < s < q < 00, then we also
have

loglizs, ) < O+ )20/ =D gllp .

Proof. Let a = eg be the extension of g to R™ by zero, that is, a(z) =
g(z) for z € R% and a(z) = 0 for z € R%, and denote a'(2) = a(z, —2,)
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and d(z) = a(z) — a'(2) = a(z) — a(z,—2,). Then we have that for
y € RY,

lg—z|? lyn —2n|? lyn+2n|?
va(y,t) = (47rt)_"/2/ e (e" B )a(z) dz

(3.1) (4rt) -”/2/ et 2)dz = Ky * a(y).

We denote by the same notation v, the extension of v, defining by (3.1)
for y € R™. By taking y — z = s, we have

b5 % va(,1) = 6 % (K, % 3)(z) = Ky * (¢ % 8)(z)

= (dmt)""/? ¢;xa(x —s e ds,
R™ !

which is the heat solution with initial data ¢; * a(z). We have

(/IR" [j * va(w,t)}pdw)l/p

1/r
< C(1+t)—n/2(1/r—1/p)(/]¢j *&(SL‘)Vda:) /

since the estimation of the heat solution is well known. Hence, we have
for1 <r<p< o,

lvallBg &y < C(1 + £) /2 /r=1/P) g — a'|| s mr)
—n/2(1/r-1/p) /
<CA+t)™ P (llallge, @ny + lla'llBa , &m))
<C(1+ t)_"/:z(l/r_l/p)||a[|Bqu(Rn)-
Therefore, by the definition of By (R} ), we have
lgllzg ) < C(L+ )24 =P) gl g .
Since for 0 < s < g < 00, I* C 19 CI°°, that is,
[16llze0 < {[bllza < [[Bl2s for b € I%,
we also have for 0 < s < ¢,
lollg, ) < C(1L+8) 241D gl g g
if g belongs to By (R%). O

Hence, the above theorem says the decay rate, and we may conclude
that E(t) is uniformly bounded in By (R%). Since S and R is bounded,
we have the following corollary.
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CORALLARY 3.2. Let u be the solution of (1.1). Assume that 1 <
r<p<ooand0 < s<q<oo. Then, we have that for all t > 0,

lallgg @) < CQA+ )7 2H 1P |ug| ge (o).

Now let us consider the continuity at ¢ = 0. As we saw, ¢; * v, is the
form of the heat solutions with initial data ¢; * (a — a').

THEOREM 3.3. vy — g in By (R%) ast — 0 with t > 0.

Proof. If we assume that vy(y,t) = K; * a(y) is also defined in the
lower half space R”, then vg is an odd function. We consider the odd
extension of vy(y,t) —g(y) to R™, which can be denoted by v, (y, t) —a(y).
Since the Schwartz space S(R") C Bj (R") is dense (refer to p.48,
Triebel [7]), it is enough to show the theorem for @ € S(R™). Hence we
may assume that @ € S (R”)

Since (4mt)™/2 [ e~

| y

dz =1, we have

vg(y,t) —a(y) = (47rt)_”/2 /n e_% (&(z) - d(y)) dz.
Notice that for 1 < p,
¢; * (vg — @)(, 1)
= (4rt)y™? /R n /R $i(z — e (a(2) — aly))d=dy
= g /2 /n djlx— 2 — \/lgs)e'“"2 (a(2) — a(z + V4ts))dsdz
= /2 /Rn [(;S] * a(x — S\/_) $j * a(x )] _|S|2ds,

and that
/ | * (vg — a)(z, t)|Pdz
=/ﬂ@ ‘"/2‘/n (6 * a(x ~ sV4t) — ¢; x a(x)]e” lslds’ dz
<C/ / |¢]*ax 3\/—) —¢j xa(x |pe —pls? /2ds]

X [/ e %@IQ_Uds]p 1dw
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<C / / |5 * a(x — sV4t) — ¢ * a(x) |Pe P’ 2dzds

< C/ / / —¢]*a(:n—esx/—)de| e PsP/2 4z s
< CV4at' / / | * Va ()| sPe 7P 2 dzds

<oV / |¢; + Va(#)[Pdz < CVat'||g; * Valfb,,
Rn

by the fundamental theorem of calculus, which tends to zero as t — 0.
For p =1, we can do in a similar way. O

Therefore, we conclude that the semigroup E(t) generated by the
heat operator in Bg (R") is a uniformly bounded C° semigroup. The
semigroup T'(t) generated by the Stokes operator in B (R%) is also a
uniformly bounded C° semigroup.

CORALLARY 3.4. For1 < p < ooand0 < g < 0o, u — ug in By ,(R7})
ast— 0 witht > 0.

We now consider the differentiability of the semigroup for ¢ > 0.
Notice that

lz—s)?

8y woula) = Ko+ (9 + (@) = (art) ™2 [ =550 v a(s) s

which is the solution with initial data ¢; * @, and the heat solution in
L? ig differentiable for ¢ > 0. Since, in LP

|z — sf?

9 sl )
5y (Ko x 8y 2a)(a) = (amt) /2 [ (220 3)@ va(s) ds
— (4nt) —n/zzawk/ ol mp — ¢J v @(s) ds

(4mt) "/QA/ (;S]*a s)ds,

we have %(Kt * @;xa)(x) = A(Kt * ¢; % a)(z) in LP, and we can say vg
is differentiable for ¢ > 0 and is equal to Avg in B (R™). Since, in L?

(4mt)"/2¢;  By(K, + a)(z)
= (dmt)"2A(Ky * ¢; * @) (x)

/ 52 /]s]2 n
= [e

El IS
at (4t2 2t>¢J *a(x —s)ds
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:/eP@Q%X/mmwﬂ—w@m
_ // _lz-w)? yl2 |z 2 n . -
= (552 - 5 ) #ila — 2)aly) dedy

= /¢j(m~z) /Aze_#&(y) dy)dz

we have ¢; x Oy(K; xa)(z) = ¢j * (AK; *a) in LP. Since, by Minkowski’s

inequality,
/‘/ i: EB@*@(&:—S ds‘ da:)l/p
/ /|¢J*ax_s P do }/p Isl? |s|
su@*wm;/-—*'w<wﬂHM*mm
an

/‘/ _4_t—¢]>ka(:1:—s s’ dm) < "2 % | v,
we have

195 * Oe(Ke * )| e
= [|A(K: * (65 @))|ze

= H(47rt)"’/2/e_th_lt2 (L—SE — ;t)¢ xa(x —s) ds‘

Lp

1 .
< Cgllqu *a||pe-

Hence, we have [|Avgllpa, < Clall Bg ., therefore, the heat semigroup
E(t) is analytic in By , by the Theorem 5.2, [5].

THEOREM 3.5. The semigroup generated by the heat equation in
By (R%) is analytic.

CORALLARY 3.6. The semigroup generated by the Stokes equations
in By (R}) is analytic for 1 < p < 00, 0 < ¢ < 0o and —00 < a < 0.
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4. Decay rate of solutions for the Stokes equations

In this section, we study the asymptotic behavior of weak solutions
of the Stokes equations in R7}.

We consider the heat solutions again: from the fundamental theorem
of calculus, we also have

¢j * Ua($,t)
;#22
=)™ [ [ 45
Rn
“Zn2 Yn Zn2
X [ ~ Lozl —e“t = | ]dzdy

= mty™ [ [ ga-ppatz)e

/1 _lyn—szn 2 Yn — SZp
X € 4t —_—
-1

oy n dsdzdy,

taking [ = § — Z and l,, = y,, — S2n, We have

1
= Ct“"/z‘l/ / ¢ (% — 1 — Z,2n — I, — 821)
—1JR" JR”
2
xzna(z)lne_%'dldzds.
Taking k = Z, ky,, = sz, we have

(4.1)  @; *ve(z,t)
= Ct~/?-1 / / ¢j(:c—z—k)( / 1 ﬁa(k,%)ds)lne-’%@dkdl.

~1 82
For short, we put
1
o kn o kn
a(k) = (/_1 B alk, )ds).

THEOREM 4.1. Let v be the solution of the heat equation with initial
data g. Assumethat l <r<p<o0,0<s<qg<o0and —oo<a<o0.
Then, we have that for sufficiently large t,

—_nel 1y 1
lvg (-, 1)l g, (re) < Ct™ 20797 % |a] g | -
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Proof. From (4.1), we have for » > 1,

l¢j * 'Ua(l', t)l
2 2
< ot~ @; * a(z — l)lpe” e~ al
R»

r 2 =
< Ct‘"/z‘l(/ lFe_rTTlJls—lt‘dl)
2 1/r
X (/ e_r%lt‘|¢j*d(z—l)|rdl> .

Taking k = \/_ \/£I’ we have
r—=1

T 2 Py
(/z,;‘—“le‘ril'—ls'?dl)
71
( ) 12+ (/kﬁe“|k|2dl) i

<oty
So, we have

1/p
(/]qu*va(:r,t)lpd:c)
" 1 2 p/r 1/p
< Ct‘ﬁ“i(/(/ e s |¢j*é(a:—l)|rdl) dw) :

By Minkowski’s inequlaity, we have

. g r/p 1/r
crr%(/(/ e—p%|¢j*a(m-—z)v’dm) dl) .
n o112 r/p 1/r
- Ct‘?‘%(/ (/ e dx) l¢j*@(l)|’dl> :

Taking k = (z — 1),/p/V/8t, we have

_ o 3(3-3)-4 ( / ( / e dk)r/pl%' * é(l)l’”dl)l/r

n l 1 1 1/7"
< corii-3) 5(/1¢]*a |sz> :

AN
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for sufficiently large t. Hence we have our result.
We now let »r =1 and p > 1. By Minkowski’s inequality, we have

1/p
(103 utar)
< C’t_"/Q"l(/ (/Rn s * a(l)] Iln|e~¥ dl)pdx) v
= Ot /?! (/ (/Rn |p; * a(l)| |zn — lnie“ﬁlf—'z dl)pdx> v

z—1)2 1/
< Ct_”/2_1/(/|xn~ln|pe"”, oy dz) |y * oz — )| I

< Ct_%(l—%)_%/kﬁj*(z(:z:—l)ldl,

for sufficiently large t. O
We put
1
y kn 5 kn
a;(k) = (/_1 3—2aj(k, ?)dS),
where a; is the extension of up; and a := (ay,...,an).

CORALLARY 4.2. Let u be the solution of the Stokes equation (1.1)
with initial data ug. Assume that 1 <r <p < oo and 0 < s < ¢ < co.
Then, we have that for sufficiently large t,

—nel 1y L
()l pg mny < Ct 2772 al| gy gny, for — oo < a < 0.

5. The Hodge decompositions

This section is devoted to the Hodge decomposition.

THEOREM 5.1. Let 1 <p < o0,0<g <00, —o0 <a<oco. B (R")
is written as Bpyq (R") & G& (R™). BS (R%) is written as Bpyg (RT) &
Gy ,(R%). Here, Byif (R7}) is the closure of {v € C§°(R}) : V-v =0} in
B, ,(R%), and G}, is the closure in By , of {V¢ : ¢ € C*°,V¢ € By }.

Proof. 1t is enough to consider for f € C§°(R™) by the density. Let’s
just consider for the case n = 3. For f € C§°(R"), consider the problem
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of which solution is given by
1 1
p=——

—V - f(y)dy.

By the divergence théorem, we have

3
1 / T — Y
=— —= fi(y)dy,
4 R3;|x“yl3 '

and

_ g(@i —yi)(w; — ;)

of which kernel is a constant multiple of the Riesz transforms. The
symbol of the kernel in 45— ¢( ) has a form c%, which satisfies |m|x < ¢
for all N > 0. By Theorem 2.1, we have

Vel , < clitling,-
Defining v =f — V¢, we have V-v =0 and ||v| Bz, < c||f| B -

In Ri, we denote by #* = (x1, 2, —z3) the reflection of x with respect
to {z3 = 0} plane. Then

1 1 1
S—— + V- £(y)dy,
¢ 4rr/Rs+(iw—y| )

is the solution of the Poisson problem A¢ = V . f, g—i’(azl,xg,O) =

f3(x1,22,0).
By divergence theorem,

#(z)

_ 1 iy %
= 47r/s (lm—yﬁﬂ y|3)ff( )y
= dr /]RS Z l 5‘13 fz +fz(y*)) ‘

if we extend f to be zero on R®. We have that V¢ belongs to By (R}),
and ||V@| Bg . < C||fllBg,, and therefore, ||| s +|[V@lBs < C“f“Ba .
&

ylg(f3( y) — fs(y*)) dy,

pg — P —
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