Image Compression System Implementation Based on DWT

DWT 기반 영상압축 시스템 구현

  • 서영호 (광운대학교 전자재료공학과) ;
  • 최순영 (광운대학교 전자재료공학과) ;
  • 김동욱 (광운대학교 전자재료공학과)
  • Published : 2003.09.01

Abstract

In this paper, a system which can compress and reconstruct the digital image was implemented using 2 dimensional DWT(Discrete Wavelet Transform). The proposed system consists of the FPGA board tocompress the image and the application software(S/W) to reconstruct it. First the FPGA receives the image from AID converter and compresses the image using wavelet transform. The compressed data is transferred into the PC using the PCI interface. The compressed image is reconstructed by an application S/W inside the PC. The image compressor can compress about 60 fields per second, in which the image format was NTSC YCbCr(4:2:2) and the image size was 640${\times}$240 pixels per field. The designed hardware mapped into one FPGA occupying 11,120 LAB (Logic Array Block) and 27,456 ESB(Embedded System Block) in APEX20KC EP20K1000B652-7. It globally uses 33MHz clock and the memory control part uses 100MHz.

본 논문에서는 2차원 DWT(Discrete Wavelet Transform)를 이용하여 디지털 영상을 압축 및 복원할 수 있는 시스템을 구현하였다. 제시한 DWT 기반 영상압축 시스템은 크게 영상을 압축하는 FPGA 보드와 영상을 복원하는 응용 소프트웨어로 구성된다. 먼저 영상을 압축하는 FPGA는 A/D 변환기로부터 영상을 받아들여서 웨이블릿 변환을 이용하여 영상을 압축하고 PCI 인터페이스를 이용하여 PC로 저장하며, PC에 저장된 압축된 영상정보는 응용 소프트웨어를 이용하여 복원된다. 영상압축 시스템은 A/D 변환기에 동기하여 NTSC YCbCr(4:2:2)의 640×240 영상을 초당 약 60 필드 압축한다. 구현된 하드웨어는 APEX20KC EP20K1000CB652-7의 FPGA에서 11,120개의 LAB(Logic Array Block)와 27,456개의 ESB(Embedded System Block)를 사용하여 하나의 FPGA내에 사상되었다. 전체적으로 33MHz의 클럭을 사용하고 메모리 제어부는 100MHz의 클럭을 사용하여 동작한다.

Keywords

References

  1. G. Knowles, 'VLSI Architectures for the Discrete Wavelet Transform', IEEE Electronic Letters, Vol. 26, No. 15, pp. 1184-1185, July 1990 https://doi.org/10.1049/el:19900766
  2. A. S. Lewis and G. Knowles, 'VLSI Architecture for 2-D Daubechies Wavelet Transform without Multipliers', IEEE Electronic Letters, Vol. 27, No. 2, pp. 171-173, Jan. 1991 https://doi.org/10.1049/el:19910110
  3. Jose Fridman and Elias S. Manolakos, 'Distributed Memory and Control VLSI Architectures for 1-D Discrete Wavelet Transform', IEEE Workshop on Signal Processing Systems, pp. 388-397, 1994 https://doi.org/10.1109/VLSISP.1994.574763
  4. Trieu-Kien Truong, et al., 'A New Architecture for the 2-D Discrete Wavelet Transform', IEEE Int'l Conf. of Communications Computers and Signal Processing, pp. 481-484, 1997 https://doi.org/10.1109/PACRIM.1997.620002
  5. Chu Yu and Sao-Jie Chen, 'Design of an Efficient VLSI Architecture for 2-D Discrete Wavelet Transform', IEEE Trans. on Consumer Electronics, Vol. 45, No. 1, pp. 135-140, Feb. 1999 https://doi.org/10.1109/30.754428
  6. Ming-Hwa Sheu, Ming-Der Shieh and Sheng-Wet Liu, 'A VLSI Architecture Design with Lower Hardware Cost and Less Memory for Separable 2-D Discrete Wavelet Transform', IEEE ISCAS'98, Vol. 5, pp. 457-460, 1998 https://doi.org/10.1109/ISCAS.1998.694531
  7. Mohan Vishiwanath, Robert Michael and Mary Jane Irwin, 'BSLI Architecture for the Discrete Wavelet Transform', IEEE Trans. on Circuits and Systems-II: Analog and Digital Signal Processing, Vol. 42, No. 5, pp. 305-316, May 1995 https://doi.org/10.1109/82.386170
  8. Jijin Chen and Magdy A. Bayoumi, 'A Scalable Systolic Array Architecture for 2-D Discrete Wavelet Transforms', IEEE Proc. of Midwest Symp. on Circuits and Systems, Vol. 2, pp. 303-312, 1996 https://doi.org/10.1109/MWSCAS.1995.510290
  9. W. Ravasi, et al., 'Wavelet Image Compression for Mobile/Portable Applications', IEEE Trans. on Consumer Electronics, Vol. 45, No. 3, pp. 794-803, Aug. 1999 https://doi.org/10.1109/30.793608
  10. Shahid Masud and John V. McCanny, 'Wavelet Packet Transform for System-on-Chip Application', IEEE Proc. on ICASSP, Vol. 6, pp. 3287-3290, 2000 https://doi.org/10.1109/ICASSP.2000.860102
  11. Ali M. Reza and Robert D. Tumey, 'FPGA Implementation of 2D Wavelet Transform', IEEE Conf. of Signals, Systems and Computers, pp. 584-588, 1999 https://doi.org/10.1109/ACSSC.1999.832397
  12. W. Jiang and A. Ortega, 'Lifting factorization-based discrete wavelet transform architecture design', IEEE Trans. Circuits Syst. Video Technol., vol. 11, pp. 651-657, May 2001 https://doi.org/10.1109/76.920194
  13. C. Diou, L. Torres, and M. Robert, 'A wavelet core for video processing,' presented at the IEEE Int. Conf. Image Process., Sept. 2000 https://doi.org/10.1109/ICIP.2000.899406
  14. G. Lafruit, L. Nachtergaele, J. Bormans, M. Engels, and I. Bolsens, 'Optimal memory organization for scalable texture codecs in MPEG-4, IEEE Trans. Circuits Syst. Video Technol., vol. 9, pp. 218-243, Mar. 1999 https://doi.org/10.1109/76.752091
  15. K. Andra, C. Chakrabati, and T. Acharya, 'A VLSI architecture for lifting-based forward and inverse wavelet transform,' IEEE Trans. on Signal Processing, vol. 50, no. 4, Apr 2002 https://doi.org/10.1109/78.992147
  16. M. Ravasi, L. Tenze, and M. Mattavelli, 'A scalable and programmable architecture for 2-D DWT decoding,' IEEE Trans. Circuits Syst. Video Technol., vol. 12, no. 8, Aug. 2002 https://doi.org/10.1109/TCSVT.2002.800863
  17. Amir Said and William A. Pearlman, 'A New, Fast and Efficient Image codec Based on Set Partitioning in Hierarchical Trees', IEEE Trans. on Circuits and Systems for Video Technology, Vol. 6, No. 3, pp. 243-250, June 1996 https://doi.org/10.1109/76.499834
  18. Shen-Fu Hsiao, Yor-Chin Tai and Kai-Hsiang Chang, 'VLSI Design of an Efficient Embedded Zerotree Wavelet Coder with Function of Digital Watermarking', IEEE Trans. on Consumer Electronics, Vol. 46, No. 3, pp. 628-636, August 2000 https://doi.org/10.1109/30.883423
  19. G. Karlsson and M. Vetterli, 'Extension of Finite Length Signals for Sub-band Coding', Signal Proc., Vol. 17, pp. 161-168, 1989 https://doi.org/10.1016/0165-1684(89)90019-4
  20. K. McGill and C. Taswell, 'Length-preserving Wavelet Transform Algorithm for Zero-padding and Linearly-extended Signals', reprint Rehabilitation R&D Center, VA Medical Center, Pao Alto, CA, Mar. 1992
  21. J. N. Christoper, et al., 'Reflected Boundary Conditions for Multirate Filter Banks', Signal Proc., Vol. 20, pp.308-310, 1992