소 체세포 핵이식기술의 효율 증진에 관한 연구

Study on the Improvement of Bovine Somatic Cell Nuclear Transfer Technique

  • 양윤희 (강원대학교 동물자원과학대학) ;
  • 최종엽 (강원대학교 동물자원과학대학) ;
  • 이상영 (경상대학교 첨단양돈연구소 생명공학과) ;
  • 박춘근 (강원대학교 동물자원과학대학) ;
  • 양부근 (강원대학교 동물자원과학대학) ;
  • 김정익 (강원대학교 동물자원과학대학) ;
  • 정희태 (강원대학교 동물자원과학대학)
  • 발행 : 2003.09.01

초록

본 연구는 난자의 성숙시간, PHA-P 처리 또는 활성화 방법이 소 미수정란의 탈핵, 재구축란의 융합, 활성화 또는 체외발육에 미치는 영향을 검토하였다. 미수정란은 성숙 후 16∼24시간에 탈핵을 실시하고, PHA-P 처리 또는 무처리된 귀 피부세포를 이식 후 전기융합을 실시하였다. 후자의 경우는 융합 전에 PHA-P로 15분간 배양하였다. 융합란은 A23187과 CHXM 혹은 DMAP의 병용처리에 의해 활성화를 유기하고, 7∼9일간 체외배양하였다. 탈핵율은 성숙 후 16∼18시간에 실시한 경우(70.2∼92.3%)가 성숙 후 20∼24시간(44.3∼3.4%)에 비하여 유의적으로 높았다(P<0.05). M-II기 염색체의 위치는 성숙배양 시간이 길어짐에 따라 제 1 극체와의 간격이 멀어졌다. Donor 세포 혹은 재구축란에 PHA-P를 처리한 경우는 무처리구에 비하여 융합율이 향상되었다(P<0.05). 핵이식배의 분할율 및 배반포 발달율은 A23187+DMAP 처리구에서 78.6%와 32.9%로, A23187+CHXM 처리구에 비하여 유의적으로 높았다(P<0.05). 본 실험 결과는 성숙후 18시간에 탈핵을 실시하는 것이 효과적이며, donor세포 또는 융합 전 재구축란의 PHA-P 처리가 융합율 향상시킬 수 있고, 또한, 융합란을 A23187과 DMAP으로 병용처리 함으로써 난자의 활성화 및 배반포 발육율을 향상시켜, 결과적으로 핵이식기술의 효율성을 증진시킬 수 있을 것으로 사료된다.

This study was conducted to examine the effects of oocyte maturation period, phytohemagglutinin-P (PHA-P) treatment and activation agent on the enucleation, fusion, activation or in vitro development of bovine nuclear transfer embryos. Bovine oocytes were enucleated at 16∼24 h of in vitro maturation (IVM). Adult ear skin cells treated or non-treated with PHA-P were transferred into enucleated oocytes. Reconstituted oocytes treated or non-treated with PHA-P were fused by a pulse of 1.5 kV/cm for 30 $\mu$sec. Fused oocytes were activated with a combination of calcium ionophore (A23187) and cycloheximide (CHXM) or dimethylaminopurine (DMAP), and cultured in vitro for 7∼9 days. Enucleation rate was significantly increased when oocytes were matured for 16∼18 h (70.2∼92.3%, P<0.05) compared to that of oocytes were matured for 20∼24 h (44.3∼53.4%). The location of metaphase-II plate was far off from the 1st polar body as maturation time was increased. PHA-P treatment of donor cells or reconstituted oocytes significantly improved fusion rate (P<0.05). Cleavage and blastocyst formation rates were significantly increased after activation with a combination of A23187 and DMAP (78.6% and 32.9%, respectively) compared to those of embryos activated with a combination of A23l87 and CHXM (48.5 and 15.2%, respectively). From the present result, it is suggested that high enucleation efficiency can obtained by using oocytes matured for 18 h. It also shows that PHA-P treatment can improve the fusion rate, and activation with a combination of A23187 and DMAP can enhance the embryo development.

키워드

참고문헌

  1. Campbell, K. H. S., McWhir, J., Ritchie, W. A. and Wilmut, I. 1996. Sheep cloned by nuclear transfer from a cultured cell line. Nature 380:64-66
  2. Cheong, H. T., Park, C. K., Yang, B. K. and Kim, C. I. 1999. Cytogenetic properties of bovine reconstituted embryos by cell cycle-controled nuclear transfer. Korean J. Reprod. 23:271-278
  3. Cheong, H. T., Park, K. W., Im, G. S., Lai, L., Sun, Q. Y., Day, B. N. and Prather, R. S. 2002. Effect of elevated $Ca^{2+}$ concentration in fusion/ activation medium on the fusion and development of porcine fetal fibroblast nuclear transfer embryos. Mol. Reprod. Dev. 61:488-492 https://doi.org/10.1002/mrd.10110
  4. Choi, J. Y., Kwon, D. J., Kim, C. I., Park, C. K., Yang, B. K. and Cheong, H. T. 2000. Effect of quiescent treatment on nuclear remodeling and in vitro development of nuclear transfer embryos derived from bovine fetal fibroblast cells. Korean J. Reprod. 24:217-222
  5. Cibelli, J. B., Stice, S. L., Golueke, P. J., Kane, J. J., Jerry, J., Blackwell, C., Abel Ponce de Leon, F. and Robl, J. M. 1998. Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 280:1256-1258 https://doi.org/10.1126/science.280.5367.1256
  6. Critser, E. S. and First, N. L. 1986. Use of a fluorescent stain for visualization of nuclear material in living oocytes and early embryos. Stain. technol. 61:1-5 https://doi.org/10.3109/10520298609110697
  7. Dominko, T., Chan, A., Simerly, C., Luetjens, C. M., Hewitson, L., Martinovich, C. and Schatten, G. 2000. Dynamic imaging of the metaphase II spindle and maternal chromosomes in bovine oocytes: implications for enucleation efficiency verification, avoidance of parthenogenesis, and successful embryogenesis. BioI. Reprod. 62:150-154 https://doi.org/10.1095/biolreprod62.1.150
  8. Im, G. S., Yang, B. S., Park, S. J., Yang, B. C., Chang, W. K. and Park, C. S. 2000. Studies on activation regimen for nuclear transfer in Hanwoo. Korean J. Anim. Reprod. 24:281-288
  9. Kato, Y., Tani, T., Sotomaru, Y., Kurokawa, K, Kato, J., Doguchi, H., Yasue, H. and Tsunoda, Y. 1998. Eight calves cloned from somatic cells of a single adult. Science 282:2095-2098
  10. Keefer, C. L., Stice, S. L. and Matthews, D. L. 1994. Bovine inner cell mass as donor nuclei in the production of nuclear transfer embryos and calves. BioI. Reprod. 50:935-939 https://doi.org/10.1095/biolreprod50.4.935
  11. Kono, T., Kwon, O. Y. and Nakahara, T. 1991. Development of enucleated mouse oocytes reconstituted with embryonic nuclei. J. Reprod. Fertil. 93:165-172 https://doi.org/10.1530/jrf.0.0930165
  12. Liu, L., Ju, J. C. and Yang, X. 1998. Parthenogenetic development and protein patterns of newly matured bovine oocytes following chemical activation. Mol. Reprod. Dev. 49:298-307 https://doi.org/10.1002/(SICI)1098-2795(199803)49:3<298::AID-MRD10>3.0.CO;2-T
  13. Liu, J. L., Wang, M. K., Sun, Q. Y., Xu, Z. and Chen, D. Y. 2000. Effect of telophase euncleation on bovine somatic nuclear transfer. Theriogenology 54:989-998 https://doi.org/10.1016/S0093-691X(00)00407-6
  14. Mohamed Nour, M. S. and Takahashi, Y. 1999. Preparation of young preactivated oocytes with high enucleation efficiency for bovine nuclear transfer. Theriogenology 51:661-666
  15. Ogura, A., Inoue, K, Ogonuki, N., Nouchi, A., Takano, K., Nagano, R., Suzuki, O., Lee, J., Ishino, F. and Matsuda, J. 2000. Production of male cloned mice from fresh, cultured, and cryopreserved immature Sertoli cells. BioI. Reprod. 62:1579-1584
  16. Presicce, G. A. and Yang, X. 1994. Nuclear dynamics of parthenogenesis of bovine oocytes matured in vitro for 20 and 40 hours and activated with combined ethanol and cycloheximide treatment. Mol. Reprod. Dev. 37:61-68
  17. Rho, G. J., Wu, B., Kawarsky, S., Leibo, S. P. and Betteridge, K. J. 1998. Activation regimens to prepare bovine oocyte. Mol. Reprod. Dev. 50:485-492 https://doi.org/10.1002/(SICI)1098-2795(199808)50:4<485::AID-MRD12>3.0.CO;2-1
  18. Smith, L. C. 1993. Membrane and intracellular effects of ultraviolet irradiation with Hoechst 33342 on bovine secondary oocytes matured in vitro. J. Reprod. Fertil. 99:39-44 https://doi.org/10.1530/jrf.0.0990039
  19. Susko-Parrish, J. L., Leibfried-Rutledge, M. L., Northey, D. L., Schutzkus, V. and First, N. L. 1994. Inhibition of protein kinases after an induced calcium transient causes transition of bovine oocytes to embryonic cycles without meiotic completion. Dev. BioI. 166:729-739 https://doi.org/10.1006/dbio.1994.1351
  20. Wells, D. N., Misica, P. M. Day, A. M. and Tervit, H. R. 1997. Production of cloned lams from an established embryonic cell line : A comparison between in vivo- and in vitro matured cytoplasts. BioI. Reprod. 57:385-393 https://doi.org/10.1095/biolreprod57.2.385
  21. Westhusin, M. W., Levanduski, M. J., Scarborough, R., Looney, C. R. and Bondioli, K. R. 1992. Viable embryos and normal calves after nuclear transfer into Hoechst stained enucleated demi-oocytes of cow. J. Reprod. Fertil. 95:475-480 https://doi.org/10.1530/jrf.0.0950475
  22. Yin, X. J., Tani, T., Yonemura, I., Kawakami, M., Miyamoto, K., Hasegawa, R., Kato, Y. and Tsunoda, Y. 2002. Production of cloned pigs from adult somatic cells by chemically assisted removal of maternal chromosomes. BioI. Reprod. 67:442-446 https://doi.org/10.1095/biolreprod67.2.442
  23. Zernicka-Goetz, M., Kubiak, J. Z., Antony, C. and Maro, B. 1993. Cytoskeletal organization of rat oocytes during metaphase II arrest and following abortive activation: A study by confocal laser scanning microscopy. Mol. Reprod. Dev. 35:165-175 https://doi.org/10.1002/mrd.1080350210