DOI QR코드

DOI QR Code

Determination of Acceptor Concentration by Use of Recording Dynamics of Photorefractive Holograms Under Low-Intensity Condition in LiNbO3

  • 투고 : 2003.02.18
  • 발행 : 2003.09.01

초록

We investigated recording dynamics of a holographic grating in the photorefractive LiNbO$_3$ crystal under the low-intensity condition of recording beams. New expressions for the space-charge field and the recording time constant were obtained by solving the Kukhtarev equations under the global space -charge field, which is induced in the previous process of recording and erasing. Their validity can be confirmed by considering the limit that the period of the grating goes to infinity both theoretically and experimentally. It was found that the new expression for the recording time constant allows us to determine acceptor concentration to be $1.2${\times}$10^{21}m^{-3}$ for pure LiNbO$_3$ crystal and 2.5${\times}$$10^{21}m^{-3}$ for the 0.1 mol% iron doped LiNbO$_3$ crystal from the measured ratio of the recording time constant under the extremely large grating condition, in which the diffusion effect can be neglected, to that under the small grating condition.

키워드

참고문헌

  1. L. Hesselink and L. M. C. Bashaw, 'Optical mem-ory implemented with photorefractive media,' Opti-cal and Quantum Electronics, vol.25, pp.S611-S661, 1993 https://doi.org/10.1007/BF00444334
  2. F. H. Mok, G. W. Burr and D. Psaltis, 'System metric for holographic memory system,' Opt. Left., vol. 21, no.12, pp.896-898, 1996 https://doi.org/10.1364/OL.21.000896
  3. T. Y. Chang, P. H. Beckwith, and P. Yeh, “Real-time optical image subtraction using dynamic holographic interference in photorefractive media,” Opt. Lett., vol. 13, no. 7, pp. 586-588, 1988. https://doi.org/10.1364/OL.13.000586
  4. C. Gu, S. Campbell, and P. Yeh, “Matrix-matrix multiplication by using grating degeneracy in photorefractive media,” Opt. Lett., vol. 18, no. 2, pp. 146-148, 1993. https://doi.org/10.1364/OL.18.000146
  5. D. Psaltis, D. Brady, X. G, Gu, and L. Lin, “Holography in artificial neural networks,” Nature, vol. 343, pp. 325-330, 1990. https://doi.org/10.1038/343325a0
  6. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. steady state,” Ferroelectrics, vol. 22, pp. 949-960, 1979. https://doi.org/10.1080/00150197908239450
  7. A. M. Glass, “The photorefractive effect,” Opt. Eng., vol. 17, pp. 470-479, 1978.
  8. A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett., vol. 25, pp. 233-235, 1974. https://doi.org/10.1063/1.1655453
  9. R. A. Rupp, R. Sommerfeldt, K. H. Ringhofer, and E. Kratzig, “Space charge field limitations in photorefractive LiNbO3:Fe crystals,” Appl. Phys., vol. B51, pp. 364-370, 1990. https://doi.org/10.1007/BF00348974
  10. C. Gu, J. Hong, H.-Y, Li, D. Psaltis, and P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys., vol. 69, no. 3, pp. 1167-1172, 1991. https://doi.org/10.1063/1.347299
  11. D. K. McMillen, T. D. Hudson, F. T. S. Yu, T. Zhang, S. Yin, and Z.Wu, “Anomalies of photovoltaic current in a Cd:Fe doped LiNbO3 crystal at 55 and 75 temperatures,” Opt. Eng., vol. 34, no. 8, pp. 2240-2242, 1995. https://doi.org/10.1117/12.209476
  12. M. Simon, S. Wevering, K. Buse, and E. Kratzig, “The bulk photovoltaic effect of photorefractive LiNbO3:Fe crystals at high light intensities,” J. Phys. D:Appl. Phys., vol. 30, no. 1, pp. 144-149, 1997. https://doi.org/10.1088/0022-3727/30/1/018
  13. B. G. Kim and B. K. Rhee,“Determination of photovoltaic constant and photoconductivity in LiNbO3:Fe using Maker fringes,” Opt. Commun., vol. 198, pp. 193-197, 2001. https://doi.org/10.1016/S0030-4018(01)01491-2
  14. R. Grousson, M. Henry, S. Mallick, and S. L. Xu, “Measurement of bulk photovoltaic and photorefractive characteristics of iron doped LiNbO3,” J. Appl. Phys., vol. 54, no. 6, pp. 3012-3016, 1983. https://doi.org/10.1063/1.332504
  15. H. Kogelnik, “Coupled-wave theory for thick holographic gratings,” Bell Sys. Tech. J., vol. 48, pp. 2909-2947, 1969. https://doi.org/10.1002/j.1538-7305.1969.tb01198.x
  16. W. Huafu, S. Guotong, and W. Zhongkang, “Photovoltaic effect in LiNbO3:Mg,” Phys. Stat. Sol.(a), vol. 89, no. 2, pp. K211-k213, 1985. https://doi.org/10.1002/pssa.2210890256
  17. F. Jermann, M. Simon, and E. Kr¨atzig, “Photorefractive properties of congruent and stoichiometric lithium niobate at high light intensities,” J. Opt. Soc. Am. B, vol. 12, no. 11, pp. 2066-2070, 1995. https://doi.org/10.1364/JOSAB.12.002066
  18. S. H. Lin, M. L. Hsieh, K. Y. Hsu, T. C. Hsieh, S.-P. Lin, T.-S. Yeh, L.-J. Hu, C.-H. Lin, and H. Chang,“Photorefractive Fe:LiNbO3 crystal thin plates for optical information processing,” J. Opt. Soc. Am. B, vol. 16, no. 7, pp. 1112-1119, 1999. https://doi.org/10.1364/JOSAB.16.001112
  19. J. K. Tyminski, and R. C. Powell, “Analysis of the decay dynamics of laser-induced gratings in LiNbO3,” J. Opt. Soc. Am. B, vol. 2, no. 3, pp. 440-446, 1985. https://doi.org/10.1364/JOSAB.2.000440
  20. F. Jermann and J. Otten, “Light-induced charge transport in LiNbO3:Fe at high light intensities,” J. Opt. Soc. Am. B, vol. 10, no. 11, pp. 2085-2092, 1993. https://doi.org/10.1364/JOSAB.10.002085