Browse > Article
http://dx.doi.org/10.3807/JOSK.2003.7.3.197

Determination of Acceptor Concentration by Use of Recording Dynamics of Photorefractive Holograms Under Low-Intensity Condition in LiNbO3  

Rhee, Bum-Ku (Dept. of Physics, Sogang University)
Kim, Bong-Gi (Dept. of Physics, Sogang University)
Shin, Seung-Ho (Dept. of Physics, Kangwon National University)
Publication Information
Journal of the Optical Society of Korea / v.7, no.3, 2003 , pp. 197-201 More about this Journal
Abstract
We investigated recording dynamics of a holographic grating in the photorefractive LiNbO$_3$ crystal under the low-intensity condition of recording beams. New expressions for the space-charge field and the recording time constant were obtained by solving the Kukhtarev equations under the global space -charge field, which is induced in the previous process of recording and erasing. Their validity can be confirmed by considering the limit that the period of the grating goes to infinity both theoretically and experimentally. It was found that the new expression for the recording time constant allows us to determine acceptor concentration to be $1.2${\times}$10^{21}m^{-3}$ for pure LiNbO$_3$ crystal and 2.5${\times}$$10^{21}m^{-3}$ for the 0.1 mol% iron doped LiNbO$_3$ crystal from the measured ratio of the recording time constant under the extremely large grating condition, in which the diffusion effect can be neglected, to that under the small grating condition.
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. steady state,” Ferroelectrics, vol. 22, pp. 949-960, 1979.   DOI   ScienceOn
2 C. Gu, J. Hong, H.-Y, Li, D. Psaltis, and P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys., vol. 69, no. 3, pp. 1167-1172, 1991.   DOI
3 D. K. McMillen, T. D. Hudson, F. T. S. Yu, T. Zhang, S. Yin, and Z.Wu, “Anomalies of photovoltaic current in a Cd:Fe doped LiNbO3 crystal at 55 and 75 temperatures,” Opt. Eng., vol. 34, no. 8, pp. 2240-2242, 1995.   DOI   ScienceOn
4 B. G. Kim and B. K. Rhee,“Determination of photovoltaic constant and photoconductivity in LiNbO3:Fe using Maker fringes,” Opt. Commun., vol. 198, pp. 193-197, 2001.   DOI   ScienceOn
5 H. Kogelnik, “Coupled-wave theory for thick holographic gratings,” Bell Sys. Tech. J., vol. 48, pp. 2909-2947, 1969.   DOI
6 W. Huafu, S. Guotong, and W. Zhongkang, “Photovoltaic effect in LiNbO3:Mg,” Phys. Stat. Sol.(a), vol. 89, no. 2, pp. K211-k213, 1985.   DOI   ScienceOn
7 S. H. Lin, M. L. Hsieh, K. Y. Hsu, T. C. Hsieh, S.-P. Lin, T.-S. Yeh, L.-J. Hu, C.-H. Lin, and H. Chang,“Photorefractive Fe:LiNbO3 crystal thin plates for optical information processing,” J. Opt. Soc. Am. B, vol. 16, no. 7, pp. 1112-1119, 1999.   DOI
8 J. K. Tyminski, and R. C. Powell, “Analysis of the decay dynamics of laser-induced gratings in LiNbO3,” J. Opt. Soc. Am. B, vol. 2, no. 3, pp. 440-446, 1985.   DOI
9 R. Grousson, M. Henry, S. Mallick, and S. L. Xu, “Measurement of bulk photovoltaic and photorefractive characteristics of iron doped LiNbO3,” J. Appl. Phys., vol. 54, no. 6, pp. 3012-3016, 1983.   DOI   ScienceOn
10 A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett., vol. 25, pp. 233-235, 1974.   DOI
11 T. Y. Chang, P. H. Beckwith, and P. Yeh, “Real-time optical image subtraction using dynamic holographic interference in photorefractive media,” Opt. Lett., vol. 13, no. 7, pp. 586-588, 1988.   DOI
12 D. Psaltis, D. Brady, X. G, Gu, and L. Lin, “Holography in artificial neural networks,” Nature, vol. 343, pp. 325-330, 1990.   DOI   ScienceOn
13 A. M. Glass, “The photorefractive effect,” Opt. Eng., vol. 17, pp. 470-479, 1978.
14 L. Hesselink and L. M. C. Bashaw, 'Optical mem-ory implemented with photorefractive media,' Opti-cal and Quantum Electronics, vol.25, pp.S611-S661, 1993   DOI
15 R. A. Rupp, R. Sommerfeldt, K. H. Ringhofer, and E. Kratzig, “Space charge field limitations in photorefractive LiNbO3:Fe crystals,” Appl. Phys., vol. B51, pp. 364-370, 1990.   DOI
16 M. Simon, S. Wevering, K. Buse, and E. Kratzig, “The bulk photovoltaic effect of photorefractive LiNbO3:Fe crystals at high light intensities,” J. Phys. D:Appl. Phys., vol. 30, no. 1, pp. 144-149, 1997.   DOI   ScienceOn
17 F. Jermann, M. Simon, and E. Kr¨atzig, “Photorefractive properties of congruent and stoichiometric lithium niobate at high light intensities,” J. Opt. Soc. Am. B, vol. 12, no. 11, pp. 2066-2070, 1995.   DOI   ScienceOn
18 F. Jermann and J. Otten, “Light-induced charge transport in LiNbO3:Fe at high light intensities,” J. Opt. Soc. Am. B, vol. 10, no. 11, pp. 2085-2092, 1993.   DOI   ScienceOn
19 F. H. Mok, G. W. Burr and D. Psaltis, 'System metric for holographic memory system,' Opt. Left., vol. 21, no.12, pp.896-898, 1996   DOI
20 C. Gu, S. Campbell, and P. Yeh, “Matrix-matrix multiplication by using grating degeneracy in photorefractive media,” Opt. Lett., vol. 18, no. 2, pp. 146-148, 1993.   DOI