Effects of Dietary Supplementation of Taurine, Carnitine or Glutamine on Endurance Exercise Performance and Fatigue Parameters in Athletes

타우린, 카르니틴 또는 글루타민 섭취가 운동선수의 지구력운동 수행능력 및 혈중 피로요소에 미치는 영향

  • 이해미 (연세대학교 식품영양학과) ;
  • 백일영 (연세대학교 체육교육학과) ;
  • 박태선 (연세대학교 식품영양학과)
  • Published : 2003.09.01

Abstract

The effects of taurine, carnitine or glutamine supplementation on endurance exercise performance along with related fatigue factors were evaluated in male college students in the Department of Physical Education, who's maximal oxygen consumption rates (VO$_2$max) were equivalent to those of endurance athletes. Twenty four subjects were randomly divided into 4 groups (n=6), and given placebo, taurine (4 g/day), carnitine (4 g/day), or glutamine (4 g/day) tablets for 2 weeks. Subjects could run 6.9 min or 9.0 min longer until exhausted on a treadmill at the intensity of 75% VO$_2$max following taurine or camitine supplementation for 2 weeks, respectively, compared to the value measured prior to each supplementation. Glutamine or placebo supplementation did not improve the endurance exercise performance based on the running time until exhausted on a treadmill. Serum lactate concentrations measured 1 hr after the initiation of the endurance exercise, as well as at all-out state tended to be decreased by taurine, carnitine, or glutamine supplementation, and were significantly lowered (43% decrease) by carnitine supplementation (p < 0.05). Taurine supplementation significantly reduced the serum inorganic phosphorus concentration measured at all-out state (14% decrease, p < 0.05), while carnitine supplementation significantly lowered the resting state serum inorganic phosphorus level (20% decrease, p < 0.05). Taurine (32% reduction) or carnitine (23% reduction) supplementation significantly decreased serum ammonia concentration measured at all-out state (p < 0.05). From these results, 4 g/day of taurine or carnitine supplementation appears to improve the endurance exercise performance and related human fatigue factors.

본 연구에서는 운동선수에 버금하는 VO$_2$max를 지닌 남자대학생을 대상으로 타우린 (4 g/day), 카르니틴 (4 g/day), 글루타민 (4 g/day), 또는 위약을 2주간 복용시킨 후 지구력운동 수행능력 및 혈중 피로요소와 관련하여 다음과 같은 결론을 얻었다. 1) VO$_2$max의 75% 강도에서 탈진 시까지의 운동지속시간은 타우린복용군의 경우 85.2$\pm$4.3분으로 복용 전에 비해 6.9분 증가하였으며, 카르니틴복용군의 경우 92.5 $\pm$ 21.1분으로 복용 전에 비해 9.0분 증가하였다. 한편, 글루타민복용군에서는 복용 전에 비해 운동지속시간이 오히려 2.7분 단축된 것으로 나타났다. 2) 운동수행 1시간 후, 그리고 탈진상태에서 채취된 혈액의 젖산농도는 타우린, 카르니틴 또는 글루타민 복용시 복용 전에 비해 감소하는 경향을 보였으며, 특히 카르니틴 복용은 탈진상태의 혈중 젖산농도를 복용 전에 비해 43% 유의하게 감소시켰다 (p < 0.05) 3) 타우린, 카르니틴 또는 글루타민을 복용시킨 결과 안정 시, 운동수행 1시간 후, 탈진 시 및 회복기 혈청 무기인산염 농도가 복용 전에 비해 더 낮은 경향을 보였다. 특히 타우린 복용군의 경우 탈진상태의 혈청 무기인산염 농도가 복용 전에 비해 14% 유의하게 감소하였고 (p < 0.05), 카르니틴 복용군의 경우 안정 시 혈청 무기인산염 농도가 복용 전에 비해 20% 유의하게 감소하였다 (p < 0.05). 4) 타우린 복용군 또는 카르니틴 복용군의 경우 탈진상태에서 측정된 혈청 암모니아농도가 복용 전에 비해 각기 32% 및 23% 유의적으로 감소하였으나 (p <0.05), 글루타민 복용군의 경우에는 복용 전에 비해 혈청 암모니아 농도가 오히려 다소 증가하는 경향을 보였다. 이상의 결과로부터 타우린 또는 카르니틴 복용은 지구력운동 수행능력을 향상시키고, 혈 중 피로요소 농도를 개선하는 효과가 있음을 알 수 있다.

Keywords

References

  1. Physiol. Rev. v.72 Physiological actions of taurine Huxtable,R.J.
  2. Sulfur Amino Acids v.9 Effects of taurine on glycolytic and axidative enzyme activities of rat skeletal muscles Takekura,H.;Tanaka,H.;Watanabe,M.;Yoshica,T.;Ono,M.
  3. Saito S, Tasaki Y, Tagami K, Suzuki M. Muscle glycogen repletion and preexercise glycogen content. Eur J Appl Physiol 68:483-488, 1993 https://doi.org/10.1007/BF00599517
  4. Eur. J. Appl. Physiol. v.68 Muscle glycogen repletion and pre-exercise glycogen content Saito,S.;Tasaki,Y.;Tagami,K.;Suzuki,M.
  5. Int. J. Sports Med. v.1 Effects of caffeine ingestion on utilization of muscle glycogen and lipid during leg ergometer cycling Essig,D.A.;Costill,D.L.;Van,Handel,O.J. https://doi.org/10.1055/s-2008-1034637
  6. Ann. Rev. Biochem. v.57 Carnitine Bieber,L.L. https://doi.org/10.1146/annurev.bi.57.070188.001401
  7. Acta. Med. Rom. v.23 Carnitine and its role in metabolism Silipran,N.
  8. Muscle Nerve v.14 Carnitine in muscle, serum, and urine of nonp-rofessional athletes: effects of physial exercise, training, and L-lcarnitine administration Arenas,J.:Ricoy,J.R.;Encinas,A.R. https://doi.org/10.1002/mus.880140703
  9. Neurology v.32 Kinetics of carnitine dependent fatty acid axidation: implications, for human carnitine deficiency Long,C.S.;Haller,R.G.;Foster,D.W.;McGarry,J.D. https://doi.org/10.1212/WNL.32.6.663
  10. J. Appl. Physiol. v.55 Effects of acute moderate-intensity exercise on arnitine metabolism in men and women Lennon,D.L.F.;Startman,F.W.;Shrago,E.;Nagle,F.F.;Madden,M.;Hanson,P.;Carter,L.
  11. Eur. J. Appl. Physiol. v.54 Effects of L-carnitine loading on the aerobic and anaerobic performance of endurance athletes Marconi,C.;Sassi,G.;Carpinelli,P. https://doi.org/10.1007/BF02335919
  12. Med. Sci. Sports Exerc. v.25 Effects of L-carnitine submaximal exercise metabolism after depletion of muscle glycogen Decombaz,J.;Deriaz,O.;Acheson,K.;Gmuender,B.;Jequier,E.
  13. Sports Med. v.26 no.3 Glutamine, exercise and immune function Walsh,N.P.;Blannin,A.K.;Robson,P.J.;Gleeson,M. https://doi.org/10.2165/00007256-199826030-00004
  14. Med. Sci. Sports Exerc. v.28 Plasma glutamine and upper respiratory tract infection during intensified training in swimmers Mackinnon,L.T.;Hooper,S. https://doi.org/10.1097/00005768-199603000-00003
  15. Am. Heart. J. v.85 Maximal oxygen intake and normorgraphic assessment of functional aerobic impairment in cardiovascular disease Bruce,R.A.;Kusumi,F.;Hosmer,D. https://doi.org/10.1016/0002-8703(73)90502-4
  16. Eur. J. Appl. Physiol. Occup. Physiol. v.54 no.4 The increase of perceived excertion, aches and pain in legs, heart and blood lactate during exercise on a bicycle ergometer Borg,G.;Ljunggren,G.;Ceci,R. https://doi.org/10.1007/BF02337176
  17. Med. Sci. Sports v.6 no.2 Thermal effects of prolonged treadmill exercise in the heart Gisolfi,C.;Copping,J.
  18. Kor. J. Physiol. Edu. v.36 Verifying the validity of fatigue elements changes following absolute exercise intensities Paik,I.Y.;Kim,J.K.;Chun,Y.S.;Oho,H.J.
  19. J. Biol. Chem. v.103 The effects of pH on carbohydrate changes in isolated anaerobic frog muscle Ronzoni,E.;Kerly,M.
  20. J. Biol. Chem. v.262 Effect of rigor and cycling cross-bridges on the structure of troponin C and Ca²+ affinity of the Ca²+ -specific regulatory sites in skinned rabbit psoas fibers Guth,H.;Potter,J.D.
  21. Biophys. J. v.59 Thin filament modulation of cross-bridge transition measured by photogeneation of Pi in skeletal muscle fibers Walke,J.W.;Lu,Z.;Swartz,D.;Moss,R.L.
  22. Int. J Sports Med. v.11 no.Sup.2 Exercise-induced hyperammonemia:peripheral and central effects Banister,E.W.;Cameron,B.J.C. https://doi.org/10.1055/s-2007-1024864
  23. Brain v.103 Ammonia: assessment of its action in postsunaptic inhibition as a cause of convulsion Iles,J.F.;Jack,J.J.B. https://doi.org/10.1093/brain/103.3.555
  24. Pharmacol. Res. Commun. v.10 Ammonia intoxification: changes of brain levels of putative neurotransmitter and related compounds and its relevance to hepatic coma Koyuncuoclu,H.;Keyer,M.;Simsek,S.;Sagduyu,H. https://doi.org/10.1016/S0031-6989(78)80098-8
  25. Med. Sci. Sports Exerc. v.22 Neutral control of the circulation during exercise Mitchell,J.H.
  26. Sulfur Amino Acids v.7 Effects of taurine on lipolytic activity of adipose tissue in rats Tanaka,H.:Watanabe,M.;Takekura,M.;Ono,M.
  27. Sulfur Amino Acids v.10 Effects of taurine on the metabolism under physical exercise Watanabe,M.:Minato,K.;Ono,M.
  28. J Pharm Pharmacol v.36 Inhibition of cholinergic response by taurine in frog isolated skeletal muscle Lehmann,A.;Hamberger,A. https://doi.org/10.1111/j.2042-7158.1984.tb02991.x
  29. Eur. J. Appl. Physiol. v.61 Influence of L-carnitine administration on maximal physical exercise Vecchit,L.;Di,Lisa F.;Pieralisi,G.;Ripari,P.;Menabo,R.;Giamberardino,M.A. https://doi.org/10.1007/BF00236072
  30. Biochem. Biophys. Res. Commun. v.188 Respiratory chain enzymes in muscle of endurance athletes:effects of L-carnitine Huertas,R.;Campos,Y.;Diaz,A.E. https://doi.org/10.1016/0006-291X(92)92355-2
  31. FEBS Lett v.341 Effects of L-carnitine on the pyruvate dehydrogenase complex and carnitine palmitoyl transferase activities in muscle of endurance athletes Arenas,J.;Huertas,R.;Campos,Y.;Daiz,A.E.;Vilalon,J.M.;Vilas,E. https://doi.org/10.1016/0014-5793(94)80246-7
  32. Eur J Appl Physiol v.56 The effects of oral supplementation with L-carnitine on maximum and submaximum exercise capacity Grieg,C.;Finch,K.M.;Jones,D.A.;Coper,M.;Sargeant,A.J.;Forte,C.A. https://doi.org/10.1007/BF00417775
  33. Int J Sports Med v.11 no.SUP2. A communicational link between skeletal muscle, brain, and cells of the immune system Parry-Billings,M.;Blomstrand,E.;AcAndrew,N.;Newsholme,E.A.
  34. Med J Aust v.162 no.1 Depression of Plasma glutamine concentration after exercise stress and its possible influence on the immune system Keast,D.;Arstein,D.;Harper,W.;Fry,R.W.;Mortion,A.R.
  35. Eur J Appl Physiol v.73 Does glutamine have a role in reducing infections in athletes? Castell,L.M.;Poortmans,J.R.;Newsholme,E.A. https://doi.org/10.1007/BF00334429
  36. Am J Physiol v.269 Stimulatory effect of glutamine on glycogen accumulation in Human skeletal muscle Varnier,M.;Leese,G.P.;Thompson,J.;Rennie,M.J.