DOI QR코드

DOI QR Code

Comparison of Patterns of Mineral Ions and Growth Responses of 4 Legume Plants by Nitrogen Applications under Saline Conditions

염 환경에서 질소공급에 따른 4종 콩과식물의 생장반응과 무기이온양상의 비교

  • Published : 2003.08.01

Abstract

We analyzed the patterns of mineral ions and growth responses among symbiotic nitrogen fixing legumes by external nitrogen applications under salt gradients. Glycine max, Phaseolus angularis and Albizzia julibrissin showed remarkable growth inhibition above 40 mM NaCl treatments, but Cassia tora did not exhibit any visible injury symptom up to 100 mM NaCl treatments. As to ionic pattern, the $Na^+$ and $Cl^-$contents in leaves of G. max, P. angularis and A. julibrissin progressively increased with higher contents of external salinity. Compared to other plants, C. tora excluded $Na^+$more efficiently and maintained rather constant ionic contents in spite of high salt levels. With a few exception, these 4 legume plants exhibited better growth by the external nitrogen supply rather than the contribution of symbiotic nitrogen fixation only under saline condition.

공생적 질소고정에 의해서 생장에 필요한 질소를 공급받는 콩과식물이 염분 스트레스하에서 보이는 생장반응 및 무기이온 양상을 규명하기 위해 대표적인 콩과식물 4종(대두, 팥, 긴강남차, 자귀나무)을 질소고정균을 접종한 다음, 무질소구와 질소공급구(2.5 mM $NH_4NO_3$)로 나누어서 0, 10, 40 및 100 mM NaCl을 처리하였으며, 식물의 생장반응 그리고 무기이온 및 총질소함량을 정량적으로 분석하였다. 대두, 팥 및 자귀나무의 경우, 40 mM NaCl 이상의 염처리에 의해 현저한 생장저해를 보였으나, 긴강남차는 100 mM NaCl 까지 정상적인 생장을 보였다. 무기이온에 대해서도 대두, 팥 및 자귀나무는 현저한 생장저해현상을 보였던 40 mM NaCl 이상의 처리구에서는 과도한 $Na^+$$Cl^+$이온의 축적양상을 보였으나, 긴강남차의 경우 염 농도의 증가에도 불구하고 체내 일정한 무기이온함량을 유지하였다. 4종 콩과식물은 공생적 질소고정에 전적으로 의존하는 식물보다 외부에서 질소를 공급한 경우 체내 일정한 이온함량을 유지하였다. 질소양상에 있어, 대두와 팥은 염 농도가 증가함에 따라 총질소함량이 점차 감소한 반면 긴강남차와 자귀나무는 염 구배에 따라 총질소함량(특히 불용성질소)이 점차 증가하는 양상을 보였다. 대두와 팥에서 총질소함량은 감소하였지만 아미노산 함량은 증가하여 높은 가용성/불용성 질소비를 나타내었다. 다소 예외는 있지만 조사된 4종 콩과식물에서 부가적인 질소공급은 생장의 증가는 물론 특정이온 및 고농도 염에 의한 독성효과를 완화시킴으로써 염에 대한 내성을 증가시키는 것으로 생각된다.

Keywords

References

  1. Alston, A. M. and R .D. Graham. 1982. The influence of soil nitrogen status and previous crop on nitrogen fixation (acetylen reduction) in barrel medic, Medicago trunculata Gaeryn. Aust. J. Soil Sci. 27, 462-469.
  2. Bernstein, L. 1975. Effects of salinity and sodicity on plant-growth. Amer. Rev. Phytopathol. 13, 295-312. https://doi.org/10.1146/annurev.py.13.090175.001455
  3. Bekki, A., J. C. Trinchant and J. Rigaud. 1987. Nitrogen fixation ($C_2H_4$ reduction) by Medicago nodules and bacteroids under sodium chloride stress. Plant Physiol. 74, 72-76.
  4. Boursiner, P. and A. Lauchli. 1990. Growth responses and mineral nutrient relations of salt-stressed sorghum. Crop Sci. 30, 1226-1233. https://doi.org/10.2135/cropsci1990.0011183X003000060014x
  5. Clase, B., R. Dekeyser, M. Van den Bulcke, M. Van Montagu and A. Caplan. 1990. Characterization of rice gene showing organ-specific expression in response to salt stress and drought. Plant Cell 2, 19-27. https://doi.org/10.1105/tpc.2.1.19
  6. Epstein, E., D. W. Rains and O. E. Elzam. 1963. Resolution of dual mechanism of potassium absorption by barley roots. Proc. Natl. Acad. Sci. U.S.A. 49, 684-692. https://doi.org/10.1073/pnas.49.5.684
  7. Greenway, H. and R. Munns. 1980. Mechanism of salt tolerance in nonhalophytes. Annu. Rev. Plant physiol. 31, 149-190. https://doi.org/10.1146/annurev.pp.31.060180.001053
  8. Kreeb, K. 1974. Pflanzen an der Salzstandorten. Naturwissenschaften 61, 337-343. https://doi.org/10.1007/BF00600299
  9. Marschner, H. 1995. Mineral nutrition of higher plants. pp. 396-404, 2nd eds., Academic Press Inc., London.
  10. Marschner, H. 1995. Mineral nutrition of higher plants. pp. 657-680. 2nd eds., Academic Press Inc., London.
  11. Pessarakli, M., J.T. Huber and T.C. Tucker. 1989. Protein synthesis in green beans under salt stress conditions. J. of Plant Nutrition 12, 115-21.
  12. Poljakoff-Mayber, A. and J. Gale. 1975. Morphological and anatomical changes in plants as a response to salinity stress. In: Plants in saline environments, pp. 97-117, In Poljakoff-Mayber, A. and J. Gale (eds.), Springer-Verlag, Berlin.
  13. Rabe, E. 1994. Altered nitrogen metabolism under environmental stress conditions. In: Plant and crop stress, pp. 261-276, In Pessarakli, M. (eds.), Marcel Dekker, New York.
  14. Singleton, P. W. and B. Bohool. 1984. Effect of salinity on nodule formation by soybean. Can. J. Plant Sci. 61, 231-239. https://doi.org/10.4141/cjps81-035
  15. Smirnoff, N. 1995. Environment and plant metabolism, pp. 270, Bios, Oxford.
  16. Szabolcs. I. 1989. Salt-Affected Soils, pp. 120-143, CRC Press, Boca Raton, FL.
  17. Torres, B. C. and F .E. Bingham. 1973. Salt tolerance of Mexican wheat. Effect of $NO_3$ - and NaCl on mineral nutrition, growth and grain production of four wheats. Soil Science Society of American Proceedings 37, 711-715. https://doi.org/10.2136/sssaj1973.03615995003700050025x

Cited by

  1. A Study on the Effect of the Rhizobacterium, Bacillus sp. SH1RP8 and Potassium Family Polymers on the Crop Growth under Saline vol.30, pp.3, 2015, https://doi.org/10.7841/ksbbj.2015.30.3.97