DOI QR코드

DOI QR Code

Enterobacter intermedious KH410의 중금속 흡착 특성

Characteristics of Heavy Metal Biosorption by Enterobacter intermedious KH410

  • 김영희 (동의대학교 생명응용과학과) ;
  • 정영기 (동의대학교 생명응용과학과) ;
  • 김광현 (동의대학교 생명응용과학과) ;
  • 김병우 (동의대학교 생명응용과학과) ;
  • 정경태 (동의대학교 생명응용과학과) ;
  • 김병석 (동의대학교 생명응용과학과) ;
  • 박지원 (부산대학교 대학원 제약학과) ;
  • 이동준 (동의대학교 생명응용과학과) ;
  • 신현철 (동의대학교 생명응용과학과)
  • 발행 : 2003.08.01

초록

담수 식물 뿌리에 부착하는 미생물의 중금속 흡착력을 조사하기 위하여 Enterobacter intermedious KH410을 분리하여 이 균주에 대한 납과 카드뮴, 구리에 대한 생흡착 특성을 조사하였다. 각각의 중금속에 대한 최저 생육 저지 농도는 납은 1.78 mM, 카드뮴은 0.17 mM, 구리는 1.39 mM 이었다. 흡착에 이용하기 위한 최대 균체 생산은 최적 조건하에서 2.56 g DCW/ $\ell$-medium이었다. 최적 흡착조건은 0.6 g-biomass, pH 4, 온도는 $20^{\circ}C$일 때이었다. 흡착평형은 30분에서, 반응용액은 400 mg/$\ell$이었다. 흡착용량(K)은 구리가 카드뮴의 1.5배, 납은 카드뮴의 1.1배로 구리가 가장 높았으며 흡착강도(1/n)는 카드뮴>구리>납의 순 이었다. 흡착강도에 따른 등온식 적용은 세가지 중금속 모두 Freundlich 흡착등온식이 적합하였다. 건조 균체를 이용한 최대 흡착은 납과 카드뮴, 구리에 대하여 각각 56.2, 58.0, 55.8 mg/g-biomass 이었다. 흡착강도를 높이기 위한 전처리제로는 0.1 M NaOH가 적합하였으며 중금속 별로는 큰 차이를 나타내지 않았다. 한편 중금속 회수를 위한 탈착 시험에서는 납은 0.1 M EDTA에서, 카드뮴과 구리는 0.1 M HNO$_3$에서 높은 탈착율을 나타내었다.

A natural habit at bacterium, Enterobacter intermedious KH410 was isolated from freshwater plant root and identified. Adsorption of heavy metals such as lead, cadmium, and copper by this strain was examined. The minimal inhibitory concentrations(MIC) for each metal were 1.78 mM for lead, 0.17 mM for cadmium and 1.39 mM for lopper, respectively. Maximum production of dried cell was 2.56 g/$\ell$ in LB medium containing 0.5% NaCl, 1% yeast extract and 1% of lactose. Optimal conditions for adsorption were 0.6 dry g-biomass, at pH 4.0 and the temperature of $20^{\circ}C$. Adsorption equilibrium reached maximum after 30 min in 400 mg/$\ell$ metal solution. The adsorption capacity (K) of copper was 1.5 times higher than that of cadmium and lead was 1.1 times higher than that of cadmium. from the results obtained in this study, Freundlich adsorption model was applicable for all metals. Adsorption strength (1/n) of heavy metal ions were in the order of cadmium>copper>lead. The adsorption of dried cell for lead, cadmium, and copper was 56.2, 58.0, 55.8 mg/g-biomass, respectively. Pretreatment to increase ion strength was the most effective with 0.1 M NaOH whereas slight difference was found both KOH and $CaCl_2$ upon same concentration. Effective desorption was induced by 0.1 M EDTA for lead and 0.1 M $HNO_2$ for cadmium and copper.

키워드

참고문헌

  1. Ahn, K. H. and K. H. Suh. 1998. Removal of lead by Arthrobacter sp. The Korean Environmental Sci. Soci. 7(1), 57-61.
  2. Ahn, K. H. and K. H. Suh. 1995. Biosorption of Heavy metals by Saccharomyces uvarum. J. Korean Environmental Sci. Soci. 4(5), 527-534.
  3. Bitton, G. 1994. Wastewater Microbiology. pp.296-303. John Wiley & Sons, New York.
  4. Dunigan, E. P. 1974. Some preliminary observations on the nitrogen-utilizing microorganisms on the roots of water hyacinth. Proc. Natl. Acad. Sci. 37, 22-24.
  5. Gadd, G. M. 2001. Microbial metal transformations. The J. of Microbiology 39(2), 83-88.
  6. Hassen, A., N. Saidi, M. Cherif and A. Boudabous. 1998. Effects of heavy metals on Pseudomonas aeruginosa and Bacillus thuringiensis. Bioresource Technol. 65, 73-82. https://doi.org/10.1016/S0960-8524(98)00011-X
  7. Holger, H., E. Ralf and R. D. Wilken. 1993. Accumulation of Mercury (II) and Methyl mercury by microbial biofilms. Wat. Res. 27(2), 237-242. https://doi.org/10.1016/0043-1354(93)90081-R
  8. Kapoor, A. and T. Viraraghavan. 1998. Biosorption of heavy metals on Aspergillus niger : Effect of pretreatment. Biosource Technology 63, 109-113. https://doi.org/10.1016/S0960-8524(97)00118-1
  9. Kim, D. S., J. H. Suh and S. K. Song. 2000. A Variation of Microorganisims by the biosorption of $Pb^{2+}$ J. of the Korean Environmental Science Society 9(4), 331-337.
  10. Kim, Y. H. 1999. Isolation of bacteria from freshwater plant roots. Korean J. of Life Science 9, 525-530.
  11. Kim, Y. H. 2002. Effects of lead, copper, and cadmium on Pseudomonas cepacia KH410 isolated from freshwater plant root. The Korean J. of Microbiology 38(1), 26-30.
  12. Mullen, M. D., D. C. Wolf, F. G. Ferris, T. J. Beveridge, C. A. Flemming and G . W. Bailey. 1989. Bacterial sorption of heavy metals. Appl. Environ. Microbiol. 55, 3143-3149.
  13. Nies, D. H. 1999. Microbial heavy-metal resistance. Appl. Microbiol. Biotechnol. 51, 730-750. https://doi.org/10.1007/s002530051457
  14. Park, J. W. and Y. H. Kim. 2001. Characteristics of heavy metal biosorption by Pseudomonas cepacia KH410. The Korean J. of Microbiology 37(3), 197-203.
  15. Parker, D. l., L. C. Rai, N. Mallick, P. K. Rai and H. D. Kumar. 1998. Effects of cellular metabolism and viability on metal ion accumulation by cultured biomass from a bloom of the Cyanobacterium Microcystis aeruginosa. Appl. Environ. Microbiol. 64(4), 1545-1547.
  16. Rho, J. Y. and J. H. Kim. 2002. Heavy metal biosorption and its significance to metal tolerance of Streptomycetes. The Journal of Microbiology 40(1), 51-54.
  17. Suh, K. H., K. H. Ahn and M. C. Cho. 1999. Biosorption of $Pb^{2+}$ and $Cr^{3+}$ by using Sargassum horneri. J. of the Korean Environmental Science Society 8(3), 387-391.
  18. Tobin, J. M., D. G. Cooper and R. J. Neufeld. 1984. Uptake of metal ions by Rhizopus arrhizus biomass. Appl. Environ. Microbiol. 47(4), 821-824.
  19. Vazquez M. D., J. Lopez, and A. Carballeira. 1999. Uptake of heavy metals to extracellular and intracellular compartment in three species of aquatic bryophyte. Ecotoxicology and Environmental Safety 44, 12-24. https://doi.org/10.1006/eesa.1999.1798
  20. Volesky, B. and Z. R. Holan. 1995. Biosorption of heavy metals. Biotechnol. Prog. 11, 235-250. https://doi.org/10.1021/bp00033a001