DOI QR코드

DOI QR Code

A STUDY ON GARCH(p, q) PROCESS

  • Lee, Oe-Sook (Department of Statistics Ewha Womans University)
  • 발행 : 2003.07.01

초록

We consider the generalized autoregressive model with conditional heteroscedasticity process(GARCH). It is proved that if (equation omitted) β/sub i/ < 1, then there exists a unique invariant initial distribution for the Markov process emdedding the given GARCH process. Geometric ergodicity, functional central limit theorems, and a law of large numbers are also studied.

키워드

참고문헌

  1. Stat. and Prob. Letters v.31 The geometric ergodicity and existence of moments for a class of nonlinear time series model H.An;M.Chen;F.Huang https://doi.org/10.1016/S0167-7152(96)00033-8
  2. J. Appl. Prob. v.35 A central limit theorem for contractive stochastic dynamical systems M.Benda https://doi.org/10.1239/jap/1032192562
  3. J. Time Series Anal. v.13 A test for conditional heteroscedisticity in time series models A.K.Bera;M.L.Higgins https://doi.org/10.1111/j.1467-9892.1992.tb00123.x
  4. Annals Prob. v.16 no.3 Asymptotics of a class of Markov processes which are not in general irreducible R.N.Bhattacharya;O.Lee https://doi.org/10.1214/aop/1176991694
  5. J. Econometrics v.31 Generalized autoregressive conditional heteroskedasticity T.Bollerslev https://doi.org/10.1016/0304-4076(86)90063-1
  6. Stochastic Processes and their Applications v.85 Extremal behavior of the autoregressive process with ARCH(1) errors M.Borkovec https://doi.org/10.1016/S0304-4149(99)00073-3
  7. J. Econometrics v.52 Stationarity of GARCH processes and of some nonnegative time series P.Bougerol;N.Picard https://doi.org/10.1016/0304-4076(92)90067-2
  8. Stochastic Processes and their Applications v.34 A multicative ergodic theorem for Lipschitz maps J.Elton https://doi.org/10.1016/0304-4149(90)90055-W
  9. Economitrica v.50 Autoregressive conditional heteroscedasticity with estimates of the variance of the United Kingdom inflation R.F.Engle https://doi.org/10.2307/1912773
  10. Ann. Prob. v.24 no.2 A Liapounov bound for solutions of the Poisson equation P.W.Glynn;s.P.Meyn https://doi.org/10.1214/aop/1039639370
  11. Statistca Sinica v.4 Probabilistic properties of the β-ARCH model D.Guegan;J.Diebolt
  12. Z. Wahrsch. Verw. Gebiete. v.67 Convergence in distribution of products of random matrices H.Kesten;F.Spitzer https://doi.org/10.1007/BF00532045
  13. J. Kor. Math. Soc. v.33 Limit theorems for Markov processes generated by iterations of random maps O.Lee
  14. Stat. and Prob. Letters v.46 On probabilistic properties of nonlinear ARMA(p.q) models O.Lee https://doi.org/10.1016/S0167-7152(99)00096-6
  15. Bull. Kor Math. Soc. v.38 no.3 Strict stationarity and functional central limit theorem for ARCH/GARCH model O.Lee;J.Kim https://doi.org/10.1090/S0273-0979-01-00918-1
  16. J. Econometrics v.11 On a double threshold autoregressive conditional heterokedastic time series model C.W.Li;W.K.Li https://doi.org/10.1002/(SICI)1099-1255(199605)11:3<253::AID-JAE393>3.0.CO;2-8
  17. J. Appl. Prob. v.36 On the probabilistic properties of a double threshold ARMA conditional heteroskedastic model S.Ling https://doi.org/10.1239/jap/1032374627
  18. J. Statist. Plann. Inference v.2 On a threshold autoregression with conditional heteroskedastic variances J.Liu;W.K.Li;C.W.Li
  19. Stat. and Prob. Lettrs v.30 A note on geometric ergodicity of autoregressive conditional heteroscedasticity(ARCH) model Z.Lu https://doi.org/10.1016/S0167-7152(95)00233-2
  20. Markov chains and Stochastic Stability S.P.Meyn;R.L.Tweedie
  21. Econometric Theory v.6 Stationarity and persistence in the GARCH(1,1) model D.B.Nelson https://doi.org/10.1017/S0266466600005296
  22. Stochastic Processes and their Applications v.23 The mixing property of bilinear and generalised random coefficient autoregressive models D.T.Pham https://doi.org/10.1016/0304-4149(86)90042-6
  23. Adv. Appl. Prob. v.30 A central limit theorem for random coefficient autoregressive models and ARCH/GARCH models A.Rudolph https://doi.org/10.1239/aap/1035227994
  24. Adv. Appl. Prob. v.22 Nonlinear time series and Markov chains D.Tjøstheim https://doi.org/10.2307/1427459
  25. Non-linear Time Series: A Dynamical System Approach H.Tong
  26. Papers in Probabilit, Statistics and Analysis Criteria for rates of convergence of Markov chains with application to queueing theory, in J.F.C. Kingman and G.E.H. Reuter, eds. R.L.Tweedie
  27. J. Time Series Anal. v.5 ARMA models with ARCH errors A.A.Weiss https://doi.org/10.1111/j.1467-9892.1984.tb00382.x

피인용 문헌

  1. Geometric ergodicity and β-mixing property for a multivariate CARR model vol.100, pp.1, 2008, https://doi.org/10.1016/j.econlet.2007.12.002
  2. DETECTING FOR SMOOTH STRUCTURAL CHANGES IN GARCH MODELS vol.32, pp.03, 2016, https://doi.org/10.1017/S0266466614000942