참고문헌
- Stat. and Prob. Letters v.31 The geometric ergodicity and existence of moments for a class of nonlinear time series model H.An;M.Chen;F.Huang https://doi.org/10.1016/S0167-7152(96)00033-8
- J. Appl. Prob. v.35 A central limit theorem for contractive stochastic dynamical systems M.Benda https://doi.org/10.1239/jap/1032192562
- J. Time Series Anal. v.13 A test for conditional heteroscedisticity in time series models A.K.Bera;M.L.Higgins https://doi.org/10.1111/j.1467-9892.1992.tb00123.x
- Annals Prob. v.16 no.3 Asymptotics of a class of Markov processes which are not in general irreducible R.N.Bhattacharya;O.Lee https://doi.org/10.1214/aop/1176991694
- J. Econometrics v.31 Generalized autoregressive conditional heteroskedasticity T.Bollerslev https://doi.org/10.1016/0304-4076(86)90063-1
- Stochastic Processes and their Applications v.85 Extremal behavior of the autoregressive process with ARCH(1) errors M.Borkovec https://doi.org/10.1016/S0304-4149(99)00073-3
- J. Econometrics v.52 Stationarity of GARCH processes and of some nonnegative time series P.Bougerol;N.Picard https://doi.org/10.1016/0304-4076(92)90067-2
- Stochastic Processes and their Applications v.34 A multicative ergodic theorem for Lipschitz maps J.Elton https://doi.org/10.1016/0304-4149(90)90055-W
- Economitrica v.50 Autoregressive conditional heteroscedasticity with estimates of the variance of the United Kingdom inflation R.F.Engle https://doi.org/10.2307/1912773
- Ann. Prob. v.24 no.2 A Liapounov bound for solutions of the Poisson equation P.W.Glynn;s.P.Meyn https://doi.org/10.1214/aop/1039639370
- Statistca Sinica v.4 Probabilistic properties of the β-ARCH model D.Guegan;J.Diebolt
- Z. Wahrsch. Verw. Gebiete. v.67 Convergence in distribution of products of random matrices H.Kesten;F.Spitzer https://doi.org/10.1007/BF00532045
- J. Kor. Math. Soc. v.33 Limit theorems for Markov processes generated by iterations of random maps O.Lee
- Stat. and Prob. Letters v.46 On probabilistic properties of nonlinear ARMA(p.q) models O.Lee https://doi.org/10.1016/S0167-7152(99)00096-6
- Bull. Kor Math. Soc. v.38 no.3 Strict stationarity and functional central limit theorem for ARCH/GARCH model O.Lee;J.Kim https://doi.org/10.1090/S0273-0979-01-00918-1
- J. Econometrics v.11 On a double threshold autoregressive conditional heterokedastic time series model C.W.Li;W.K.Li https://doi.org/10.1002/(SICI)1099-1255(199605)11:3<253::AID-JAE393>3.0.CO;2-8
- J. Appl. Prob. v.36 On the probabilistic properties of a double threshold ARMA conditional heteroskedastic model S.Ling https://doi.org/10.1239/jap/1032374627
- J. Statist. Plann. Inference v.2 On a threshold autoregression with conditional heteroskedastic variances J.Liu;W.K.Li;C.W.Li
- Stat. and Prob. Lettrs v.30 A note on geometric ergodicity of autoregressive conditional heteroscedasticity(ARCH) model Z.Lu https://doi.org/10.1016/S0167-7152(95)00233-2
- Markov chains and Stochastic Stability S.P.Meyn;R.L.Tweedie
- Econometric Theory v.6 Stationarity and persistence in the GARCH(1,1) model D.B.Nelson https://doi.org/10.1017/S0266466600005296
- Stochastic Processes and their Applications v.23 The mixing property of bilinear and generalised random coefficient autoregressive models D.T.Pham https://doi.org/10.1016/0304-4149(86)90042-6
- Adv. Appl. Prob. v.30 A central limit theorem for random coefficient autoregressive models and ARCH/GARCH models A.Rudolph https://doi.org/10.1239/aap/1035227994
- Adv. Appl. Prob. v.22 Nonlinear time series and Markov chains D.Tjøstheim https://doi.org/10.2307/1427459
- Non-linear Time Series: A Dynamical System Approach H.Tong
- Papers in Probabilit, Statistics and Analysis Criteria for rates of convergence of Markov chains with application to queueing theory, in J.F.C. Kingman and G.E.H. Reuter, eds. R.L.Tweedie
- J. Time Series Anal. v.5 ARMA models with ARCH errors A.A.Weiss https://doi.org/10.1111/j.1467-9892.1984.tb00382.x
피인용 문헌
- Geometric ergodicity and β-mixing property for a multivariate CARR model vol.100, pp.1, 2008, https://doi.org/10.1016/j.econlet.2007.12.002
- DETECTING FOR SMOOTH STRUCTURAL CHANGES IN GARCH MODELS vol.32, pp.03, 2016, https://doi.org/10.1017/S0266466614000942