Stress Intensity Factors and Kink Angle of a Crack Interacting with a Circular Inclusion Under Remote Mechanical and Thermal Loadings

  • Lee, Saebom (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Park, Seung-Tae (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Earmme, Youn-Young (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Chung, Dae-Youl (KNGR Project Team, Korea Electric Power Research Institute)
  • Published : 2003.08.01

Abstract

A problem of a circular elastic inhomogeneity interacting with a crack under uniform loadings (mechanical tension and heat flux at infinity) is solved. The singular. integral equations for edge and temperature dislocation distribution functions are constructed and solved numeric-ally, to obtain the stress intensity factors. The effects of the material property ratio on the stress intensity factor (SIF) are investigated. The computed SIFs are used to predict the kink angle of the crack when the crack grows.

Keywords

References

  1. Atkinson, C., 1972, 'The Interaction Between a Crack and an Inclusion,' International Journal of Engineering Science, Vol. 10, pp. 127-136 https://doi.org/10.1016/0020-7225(72)90011-0
  2. Bogdanoff, J. L., 1954, 'Note on Thernal Stress,' Journal of Applied Mechanics, Vol. 21, p. 88
  3. Cha, Y. H., Kim, K. S. and Kim,D . J., 1998, 'Evaluation on the Fracture Toughness and Strength of Fiber Reinforced Brittle Matrix Composites,' KSME International Journal, Vol. 12, No. 3, pp. 370-379 https://doi.org/10.1007/BF02946351
  4. Chao, C. K. and Lee, J. Y., 1996, 'Interaction Between a Crack and a Circular Elastic Inclusion Under Remote Uniform Heat Flow,' International Journal of Solids Structures, Vol. 33, No. 26, pp. 3865-3880 https://doi.org/10.1016/0020-7683(95)00218-9
  5. Chung, D. Y., Huh, M. S. and Earmme,Y. Y., 2001, 'Thermoelastic Interaction Between a Crack and a Circular Inhomogeneity,' International Journal of Fracture, Vol. 111, pp. L9-L14 https://doi.org/10.1023/A:1012340524395
  6. Dvorak, G. J., 2000, 'Composite Materials Inelastic Behavior, Damage, Fatigue and Fracture,' International Journal of Solids and Structures, Vol. 37, pp. 155-170 https://doi.org/10.1016/S0020-7683(99)00085-2
  7. Florence, A. L. and Goodier, J. N., 1960, 'Thermal stresses due to Disturbance of Uniform Heat Flow by an Insulated Ovaloid Hole,' ASME Journal of Applied Mechanics, Vol. 27, pp. 635-639 https://doi.org/10.1115/1.3644074
  8. Han, N. L., Wang, Z. G., Zhang, G. D. and Lui, L., 1999, 'Effect of Reinforcement on Cyclic Stress Response of a Particulate SiC/Al Composite,' Materials Letters, Vol. 38, pp. 70-76 https://doi.org/10.1016/S0167-577X(98)00134-7
  9. Hills, D. A., Kelly, P. A., Dai, D. N. and Korsunsky, A. M., 1996, Solutions of Crack Problems, the Distributed Dislocation Technique, Kluwer Academic Publishers, pp. 29-68
  10. Hutchinson, J. W. and Suo, Z., 1990, Mixed Mode Crocking in Layered Materials, MECH-164, Harvard University
  11. Jin, Z-H. and Batra, R. C., 1999, 'Thermal Shock Cracking in a Metal-Particle-Reinforced Ceramic Matrix Composite,' Engineering Fracture Mechanics, Vol. 62, pp. 339-350 https://doi.org/10.1016/S0013-7944(98)00112-X
  12. Lee, K. W., Choi, S.T. and Earmme,Y. Y., 1999, 'A Circular Inhomogeneity Problem Revisited,' ASME Journal of Applied Mechanics. Vol. 66, pp. 276-278
  13. Monagan, M. B., Geddes, K. O., Heal, K.M .,L abahn, G.,V orkoetter, S. M., McCarron, J, and DeMarco, P., 2001, Maple 7 Programming guide, Waterloo Maple Inc.
  14. Muskhelishvili, N. I., 1953, Some Basic Problems of Mathematical Theory of Elasticity, Noordhoff, Groningen
  15. Perlman, A. B. and Sih, G. G., 1967, 'Elastostatic Problems of Curvilinear Cracks in Bonded Dissimilar Materials,' International Journal of Engineering Science, Vol. 5, pp. 845-867 https://doi.org/10.1016/0020-7225(67)90009-2