References
- Mullin, T. and Blohm, C., 2001, 'Bifurcation Phenomena in a Taylor-Couette Flow with Asymmetric Boundary Conditions,' Phys. Fluids, Vol. 13, No. 1, pp. 136-140 https://doi.org/10.1063/1.1329906
- Wereley, S. T. and Lueptow, R. M., 1998, 'Spatio-Temporal Character of Non-wavy and Wavy Taylor-Couette Flow,' J. Fluid Mech., Vol. 364, pp. 59-80 https://doi.org/10.1017/S0022112098008969
- Hwang, J. Y. and Yang, K. S., 2001, 'Numerical Study of Wavy Taylor-Couette Flow(I), without an Axial Flow,'' KSME B, Vol. 25, No. 5, pp. 697-704
- Wereley, S. T. and Lueptow, R. M., 1999, 'Velocity Field for Taylor-Couette Flow with an Axial Flow,' Phys. Fluids, Vol. 11, No. 12, pp. 3637-3649 https://doi.org/10.1063/1.870228
- Hwang, J. Y. and Yang, K. S., 2001, 'Numerical Study of Wavy Taylor- Couette Flow (II), without an Axial Flow,'' KSME B, Vol. 25, No. 5, pp. 705-712
- Lueptow, R. W., Docter, A. and Min, K., 1992, 'Stability of Axial Flow in Ann Annulus with a Rotating Inner Cylinder,' Phys. Fluids, Vol. 4, No. 11, pp. 2446-2455 https://doi.org/10.1063/1.858485
- Chung, K. C. and Astill, K. N., 1977, 'Hydrodynamic Instability of Viscous Flow between Rotating Coaxial Cylinders with Fully Developed Axial Flow,' J. Fluid Mech., Vol. 81, pp. 641-655 https://doi.org/10.1017/S0022112077002274
- Rosenfeld, M., Kwak, D., and Vinokur, M., 1994, 'A Fractional Step Solution Method for the Unsteady Incompressible Navier-Stokes Equations in Generalized Coordinate Systems,' Journal of Computational Physics, Vol. 94, pp. 102-137 https://doi.org/10.1016/0021-9991(91)90139-C
- Hunt, J. C. R., Abell, C. J., Peterka, J. A., and Woo, H., 1978, 'Kinematical Studies of the Flows Around Free or Surface-Mounted Obstacles; Applying Topology to Flow Visualization,' J. Fluid Mech., vol. 86, part 1, pp. 179-200 https://doi.org/10.1017/S0022112078001068