DOI QR코드

DOI QR Code

Tuning of a Laterally Driven Microresonator using Electrostatic Comb Step Array

계단식 정전빗살구조물을 이용한 수평구동형 미소공진기의 주파수 조정

  • 이기방 (한국과학기술원 디지털나노구동연구단) ;
  • 서영호 (한국과학기술원 디지털나노구동연구단) ;
  • 조영호 (한국과학기술원 디지털나노구동연구단)
  • Published : 2003.08.01

Abstract

We present a new post-fabrication frequency tuning method for laterally driven electrostatic microresonators using a DC-biased electrostatic comb array of linearly varied finger-length. The electrostatic tuning force and the equivalent stiffness, adjusted by the DC-biased tuning-comb array, have been formulated as functions of geometry and DC tuning voltage. A set of frequency-turnable microresonators has been designed and fabricated by 4-mask surface-micromachining process. The resonant frequency of the microfabricated microresonator has been measured for a varying tuning voltage at the reduced pressure of 1 torr. The maximum 3.3% reduction of the resonant frequency is achieved at the tuning voltage increase of 20V.

Keywords

References

  1. Tang, W.C., Nguyen, C.T.-C. and Howe, R.T. 1989, 'Laterally driven polysilicon resonant microstructures,' Sensors and Actuators, A20, pp. 25-32 https://doi.org/10.1016/0250-6874(89)87098-2
  2. Hierold, C., Hildebrandt, A., Naher, U. Scheiter, T., Mensching, B., Steger, M. and Tielert, R., 1996, 'A pure CMOS surface micromachined integrated accelerometer,' Proc. Micro Electro Mechanical Systems, pp. 174-179 https://doi.org/10.1109/MEMSYS.1996.493849
  3. Lee, K.B., Yoon, J.-B., Kang, M.-S., Cho, Y.-H., Youn, S.-K., and Kim, C.-H., 1996, 'A surface-micromachined tunable microgyroscope,' IEEE Conference on Emerging Technologies and Factory Automation (ETFA-96), Hawaii, pp. 498-502 https://doi.org/10.1109/ETFA.1996.573900
  4. Roessig, T., Pisano, A.P., Howe, R.T., 1995, 'Surface-micromachined resonant force sensor,' Proc. the ASME Dynamic Systems and Control Division, pp. 871-876
  5. Habibi, M., Lueder, E., Kallfass, T., Horst, D., 1995, 'A surface micromachined capacitive absolute pressure sensor array on a glass substrate,' Sensors and Actuators, A46-47, pp. 125-128 https://doi.org/10.1016/0924-4247(94)00874-4
  6. Langdon, R.M., 'Resonant sensors-a review,' 1985, J Phys E: Sci Instrum, 18, pp. 103-115 https://doi.org/10.1088/0022-3735/18/2/002
  7. Wang, K. and Nguyen, C.T.-C., 1997, 'High-order microelectromechanical electronic filters,' Proc. Micro Electro Mechanical Systems, Nagoya, Japan, pp. 25-30
  8. Sene, D.E., Grantham, J.W., Bright, V.M. and Comtois, J.H., 1996, 'Development and characterization of micro-mechanical gratings for optical modulation,' Proc. Micro Electro Mechanical Systems, San Diego, CA, U.S.A., pp. 222-227 https://doi.org/10.1109/MEMSYS.1996.493984
  9. Yao, J.J. and MacDonald, N.C., 1996, 'A micromachined, single-crystal silicon, tunable resonator,' J. Micromech. Microeng., 6, pp. 257-264 https://doi.org/10.1088/0960-1317/5/3/009
  10. Adams, S.G., Bertsch, F.M., Shaw, K.A., Hartwell, P.G., MacDonald, N.C. and Moon, F.C., 1995, 'Capacitance base tunable micromechanical resonators,' Proc. 8th Inter. Conf. Solid-State Sensors and Actuators (Transducers '95), Stockholm, pp. 438-441 https://doi.org/10.1109/SENSOR.1995.717233
  11. Maxwell solver, Electrostatic Package V.4.20, Ansoft Corp., Pittsburgh, PA, U.S.A.