Synthesis and Characterization of Chelating Resins Containing Thiol Croups

티올기를 함유하는 킬레이트 수지의 합성 및 특성

  • Published : 2003.07.01

Abstract

Three kinds of macro-reticular bead-typed chelating resins having thiol groups were obtained from basic resins like poly(strene-co-divinylbenzene) (PSD) and poly(styrene-co-methyl methacrylate-co-divinylbenzene) (PSMD): the chelating resin (I) was prepared by chloromethylation of phenyl rings of PSD followed by thiolation using thiourea. The chelating resin (ll) was designed to provide enough space to chelate heavy metal ions; one chloromethyl group was obtained by chlorination of hydroxymethyl group provided by reduction of carboxylic ester group of PSMD and another chloromethyl group was obtained by direct chloromethylation of pendent phenyl group using chloromethyl methyl ether. Both of chloromethyl groups were thiolated by using thiourea. The chelating resin (III) was prepared by chlorosulfonation of phenyl rings of PSD followed by thiolation using sodium hydrosulfide. The adsorbtivity toward heavy metal ions was evaluated. The hydrophobic chelating resin (I) with thiol groups showed highly selective adsorption capacity f3r mercury ions. However, the chelating resin (II) with thiol groups showed mere effective adsorption capacity toward mercury ions than chelating resin (I) with thiol groups, and showed some adsorption capacity for other heavy metal ions like Cu$\^$2+/, Pb$\^$2+/, Cd$\^$2+/ and Cr$\^$3+/. On the other hand, the chelating resin (III) which have hydrophilic thiosulfonic acid groups was found to be effective adsorbents for some heavy metal ions such as Hg$\^$2+/, Cu$\^$2+/, Ni$\^$2+/, Co$\^$2+/, Cr$\^$3+/ and especially Cd$\^$2+/ and Pb$\^$2+/.

폴리(스티렌-co-디비닐벤젠) 수지 페닐고리의 클로로메틸화를 통해 메틸렌티올기를 도입한 수지 (I), 폴리(스티렌-co-메틸 메타아크릴레이트-co-디비닐벤젠) 공중합체의 페닐고리와 에스터기에 클로로메틸화 반응을 거쳐 각각 메틸렌티올기를 도입하여 중금속 이온들과의 배위결합에 필요한공간개념을 배려한 수지(II) 및 폴리(스티렌-co-디비닐벤젠) 수지의 페닐고리를 클로로설폰화한 후, 소디움하이드로술파이드로 티오설폰산화한 수지 (III) 등 3가지 종류의 티올계 구상형 수지들을 합성하였다. 이어, 이들 킬레이트 수지들에 대한 중금속 이온의 흡착경향을 평가한 결과, 티올기 함유 I형 킬레이트 수지는 Hg$^{2+}$에 대해서만 선택적 흡착성을 보였고, 티올기 함유 II형 킬레이트 수지는 Hg$^{2+}$에 대한 흡착성능이 보다 향상되었으며, Cu$^{2+}$, Pb$^{2+}$, C$d^{2+}$ 및 Cr$^{3+}$ 등의 몇몇 중금속 이온들에 대해서도 약간의 흡착능을 보였다. 다른 한편으로, 친수성의 티오설폰산기 함유 III형 킬레이트 수지는 효율적 흡착체로서 Hg$^{2+}$, Cu$^{2+}$, Ni$^{2+}$, Co$^{2+}$ 및 Cr$^{3+}$ 등의 중금속 이온들은 물론, 특히 C$d^{2+}$ 및 Pb$^{2+}$에 높은 흡착능을 보였다.

Keywords

References

  1. Izv. Akad. Nauk Kaz. USSR. Ser. Khim.;Chem.Abstr. v.5;58237 B.S.Chokina;L.N.Prodius; E.E.Ergozhin
  2. PCT Int. Appl.WO20001040176 A1 M.Sakamoto;S.Tomita;Y.Takashima;H.Koga
  3. Chem. Abstr. v.135 M.Sakamoto;S.Tomita;Y.Takashima;H.Koga
  4. Nippon Kagaku Kaishi v.4 H.Maeda;H.Egawa
  5. J. Polym. Sci. Polym. Lett. Ed. v.20 K.Mori;N.Asabe;Y.Nakamura https://doi.org/10.1002/pol.1982.130200606
  6. Makromol. Chem. v.184 M.Tomoi;O.Abe;N.Takasu;H.Kakiuchi https://doi.org/10.1002/macp.1983.021841204
  7. Anal. Chim. Acta v.162 H.Maeda;H.Egawa https://doi.org/10.1016/S0003-2670(00)84255-5
  8. J. Appl. Polym. Sci. v.62 T.Nonaka;Y.Uemura,K.Enishi;S.Kurihara https://doi.org/10.1002/(SICI)1097-4628(19961205)62:10<1651::AID-APP17>3.0.CO;2-4
  9. Nippon Kagaku Kaishi v.12 H.Egawa;Y.Jogo;H.Maeda
  10. Anal. Chem. v.50 R.J.Phillips;J.S.Fritz https://doi.org/10.1021/ac50033a030
  11. Anal. Chem. v.48 E.M.Moyers;J.S.Fritz https://doi.org/10.1021/ac50002a013
  12. React. Polym. v.14 B.A.Utkelov;E.E.Ergozhin;R.K.Ashkeeva https://doi.org/10.1016/0923-1137(91)90035-M
  13. J. Polym. Mater. v.8 N.Bicak;G.Koza;Y.Yusuf
  14. Japan. Kokai JP52121692 S.Tamura;K.Takase; H.Hisayama
  15. Chem. Abstr. v.88 S.Tamura;K.Takase; H.Hisayama
  16. Polymer v.20 J.M.Frechet;M.D.De Smet;M.J.Farall https://doi.org/10.1016/0032-3861(79)90241-6
  17. J. Hetrocycl. Chem. v.24 L.V.Dunkerton;B.C.Barot https://doi.org/10.1002/jhet.5570240341
  18. J. Org. Chem. v.53 Y.Gao;K.B.Sharpless https://doi.org/10.1021/jo00252a046
  19. J. Org. Chem. v.36 E.W.Collington;A.I.Meyers https://doi.org/10.1021/jo00819a032
  20. Chem. Lett. T.Fujisawa;I.Sachio;T.Sato
  21. Ger. Offen. DE 2635281 H.U.Blank
  22. Chem. Abstr. v.88 H.U.Blank
  23. Jpn. Kokai Tokkyo Koho JP0182688 M.Date;I.Tanaka
  24. Chem. Abstr. v.110 M.Date;I.Tanaka
  25. J. Heterocycl. Chem. v.34 K.Morimoto;T.Sato;S.Yamamoto;H.Takeuchi https://doi.org/10.1002/jhet.5570340231
  26. Jpn. Kokai Tokkyo Koho JP 2000273179 T.Matsuo;Y.Kizaki
  27. Chem. Abstr. v.133 T.Matsuo; Y.Kizaki
  28. J. Org. Chem. v.46 E.Santaniello;P.Ferraboschi https://doi.org/10.1021/jo00335a058
  29. J. Org. Chem. v.47 H.C.Brown;Y.M.Choi;S.Narasimhan https://doi.org/10.1021/jo00137a025
  30. Tetrahedron Lett. v.24 Y.Kamitori;M.Hojo;R.Masuda;T.Inoue;T.Izumi https://doi.org/10.1016/S0040-4039(00)81985-1
  31. J. Am. Chem. Soc. v.75 D.J.Cram https://doi.org/10.1021/ja01098a024
  32. J. Appl. Polym. Sci. v.29 H.Egawa;T.Nonaka;M.Ikari https://doi.org/10.1002/app.1984.070290613
  33. J. Appl. Polym. Sci. v.59 S.Savaskan;N.Besirli;B.Hazer https://doi.org/10.1002/(SICI)1097-4628(19960307)59:10<1515::AID-APP3>3.0.CO;2-P
  34. Angew. Makromol. Chem. v.197 I.H.Park;J.C.Jung;S.C.Hwang;J.O.Joo https://doi.org/10.1002/apmc.1992.051970110
  35. Angew. Makromol. Chem. v.239 I.H.Park;J.M.Suh https://doi.org/10.1002/apmc.1996.052390111
  36. Angew. Makromol. Chem. v.267 I.H.Park;J.M.Rhee;Y.S.Jung https://doi.org/10.1002/(SICI)1522-9505(19990601)267:1<27::AID-APMC27>3.0.CO;2-Z
  37. J. Macromol. Sci.,Pure Appl. Chem. v.A38 N.Daniel;A.K.Srivastava
  38. Polym. J. v.31 Y.Shimano;K.Sato;D.FuKui;Y.Onodera;Y.Kimura https://doi.org/10.1295/polymj.31.296
  39. J. Kor. Pharm. v.18 K.S.Kim;D.W.Jeon;K.H.Park
  40. Vysokomol. Soedin., Ser. A Ser. B v.39 G.S.Bylina;T.A.Nikolaeva
  41. Plaste Kautsch. v.30 L.Feistel;G.Popov;G.Schwachula
  42. Khim. Tekhnol.(Kiev) v.3 Y.V.Svetkin;M.V.Burmistr;A.N.Talanov;O.E.Degtyarev;V.E.Zak;N.S.Malovichko
  43. Chem. Abstr. v.98 Y.V.Svetkin;M.V.Burmistr;A.N.Talanov;O.E.Degtyarev;V.E.Zak;N.S.Malovichko
  44. J. Korean Fiber Soc. v.24 D.W.Jeon;H.J.Lee
  45. J. Macromol Sci.,Rev. Macromol. Chem. Phys. v.C27 M.Camps;M.Chatzopoulos;J.M.Camps;J.E.Montheard
  46. Polym. Commun. v.29 no.12 F.Abassi;P.Hodge;E.Khoshdel
  47. Chem. Abstr. v.110 F.Abassi;P.Hodge;E.Khoshdel
  48. Ind. Eng. Chem. Res. v.37 N.Kabay;M.Demircioglu;H.Ekinci;M.Yueksel;M.Mehmet;M.Akcay;M.Streat https://doi.org/10.1021/ie970488l
  49. PCT Int. Appl.WO2000001458 A1 A.Spiro;C.A.Shelley;E.P.Horitz;R.Chiarizia;J.Michael;X.Xue
  50. Chem. Abstr. v.132 A.Spiro;C.A.Shelley;E.P.Horitz;R.Chiarizia;J.Michael;X.Xue
  51. Anal. Chem. v.53 A.Deratani;B.Sebille https://doi.org/10.1021/ac00235a007
  52. Solvent Extr. Ion Exch. v.18 B.Saha;M.Iglesias;I.W.Cumming;M.Streat https://doi.org/10.1080/07366290008934676
  53. Chem. Abstr. v.132 B.Saha;M.Iglesias;I.W.Cumming;M.Streat