Numerical Computation of Dynamic Stress Intensity Factors in Axisymmetric Problems

축대칭 문제에서의 동적 응력확대계수의 계산

  • 이성희 (금오공과대학교 생산기술연구소) ;
  • 심우진 (금오공과대학교 기계공학부)
  • Published : 2003.06.01

Abstract

In this paper, the finite element method for the elastodynamic axisymmetric fracture analysis is presented in matrix form through the application of the Galerkin method to the time integral equations of motion with no inertia forces. Isoparametric quadratic quadrilateral element and triangular crack tip singular elements with one-quarter node are used in the mesh division of the finite element model. To show the validity and accuracy of the proposed method, the infinite elastic medium with the penny shaped crack is solved first and compared with the analytical solution and the numerical results by the finite difference method and the boundary element method existing in the published literatures, and then the dynamic stress intensity factors of solid and hollow cylinders of finite dimensions haying penny-shaped cracks and internal and external circumferential tracks are computed in detail.

본 논문에서는 균열을 지닌 축대칭 문제를 해석하기 위하여 시간적분형 운동방정식을 바탕으로 한 유한요소 해법을 제시한다. 유한요소메쉬는 8절점 등매개변수 사변형 요소와 균열선단에서의 1/4절점 삼각형 특이요소로 구성되며, 동적 응력확대계수는 균열면상의 1/4절점의 y방향 변위로부터 구한다. 제시된 해법의 정확성과 타당성을 검증하기 위하여 내부에 원환균열을 지닌 무한 탄성체가 균열면상에서 충격하중을 받을 때의 동적 응력확대계수를 계산하고 타 수치결과와 비교 검토하였다. 응용 예제로서 원환균열과 원주균열을 지닌 중실축과 중공축의 동적 응력확대계수를 균열의 길이와 축의 길이에 따른 영향을 자세히 조사하였다. 균열길이가 커지면 동적 응력확대계수가 커지고, 축의 길이가 길어지면 동적 응력확대계수 곡선의 폭도 함께 증가됨을 확인하였다. 그리고 균열의 위치가 안쪽에 포함될 경우보다는 바깥쪽에 포함될 때 더 큰 동적 응력확대계수가 발생됨을 밝힌다.

Keywords

References

  1. Aberson, J.A., Anderson J.M., and King, W.W., 'Dynamic Analysis of Cracked Structures Using Singularity Finite Elements', Sih, G.C.(ed.), Mechanics of Fracture 4, Elastodynamic Crack Problems, Noorhoff, Leyden. 1977
  2. Kishimoto, K., Aoki, S., and Sakata, M., 'Dynamic Stress Intensity Factors Using J-Integral and Finite Element Method', Eng. Frac. Mech., Vol.13, 1980, pp.387-394 https://doi.org/10.1016/0013-7944(80)90067-3
  3. Nishioka, T., Recent Developments in Computational Dynamic Fracture Mechanics, in: M.H. Aliabadi, ed., Dynamic Fracture Mechanics (Computational Mechanics Publications, Southampton), 1995
  4. Harari, I., Hughes, T.J.R., Grosh, K., Malhotra, M., Pinsky, P.M., Stewart, J.R. and Tho-mpson, L.L., 'Recent Developments in Finite Element Methods for Structural Acoustics', Archives of Computational Methods in Engineering, Vol.3, 1996, pp.131-309 https://doi.org/10.1007/BF03041209
  5. Tan, M. and Meguid, S.A., 'Dynamic Analysis of Cracks Perpendicular to Bimaterial Interfaces Using a New Singular Finite Elements', Fin. El. Anal. Des., Vol.22, 1996, pp.69-83 https://doi.org/10.1016/0168-874X(95)00060-7
  6. Li, C., Zou, Z., and Duan, Z., 'Stess Intensity Factors for Functionally Graded Solid Cylinders', Eng. Frac. Mech., Vol.63, 1999, pp.735-749 https://doi.org/10.1016/S0013-7944(99)00045-4
  7. Sim, W.J. and Lee, S.H., 'Transient Linear Elastodynamic Analysis in Time Domain Based on the Integro-Differential Equations', Int. J. Structural Engineering and Mechanics, Vol. 14, No.1, 2002, pp.71-84
  8. 황갑운, 조규종, '충격하중이 작용하는 평판의 동적 응력 해석', 한국전산구조공학회 논문집 제8권, 제1호, 1995, pp.137~146
  9. 심우진, 이성희, '축대칭 문제에서의 동적 응력집중 해석', 대한기계학회 논문집 A권, 제26권 제11호, 2002, pp.2364~2373
  10. Zienkiewicz, O.C. and Taylor, R.L., The Finite Element Method(4th edn.), McGraw-Hill, London, 1991
  11. Reddy, J.N., An Introduction to the Finite Element Method, McGraw-Hill, New York, 1993
  12. Bathe, K.J., Finite Element Procedures, Prentice- Hall, Englewood Cliffs, 1996
  13. Sladek, J. and Sladek, V., 'Dynamic Stress Intensity Factors Studied by Boundary Integro- Differential Equations', Num. Meth. Eng., Vol. 23, 1986, pp.919-928 https://doi.org/10.1002/nme.1620230512
  14. Hirose, S. and Achenbach, J.D., 'Time-Domain Boundary Element Analysis of Elastic Wave Interaction with a Crack', Int. J. Num. Meth. Eng., Vol.28, 1989, pp.629-644 https://doi.org/10.1002/nme.1620280311
  15. Dargush, G.F. and Banerjee P.K., 'Time Dependent Axisymmetric Thermoelastic Boundary Element Analysis', Int. J. Num. Meth. Eng., Vol.33, 1992, pp.695-717 https://doi.org/10.1002/nme.1620330403
  16. Zhang, Ch. and Gross, D., On Wave Propagation in Elastic Solids with Cracks, Computational Mechanics Publications, Southampton, 1998
  17. Tsinopoulos, S.V., Kattis, S.E., Polyzos D., and Beskos, D.E., 'An Advanced Boundary Element Method for Axisymmetric Elastodynamic Analysis', Comp. Meth. Appl. Mech. Eng., Vol.175, 1999, pp.53-70 https://doi.org/10.1016/S0045-7825(98)00319-3
  18. Wen, P.H., Aliabadi, M.H., and Rooke, D.P., 'A Mass-Matrix Formulation for Three-Dimensional Dynamic Fracture Mechanics', Comp. Meth. Appl. Mech. Eng., Vol.173, 1999, pp.365-374 https://doi.org/10.1016/S0045-7825(98)00291-6
  19. 김태규, 조상봉, 권재도, 최선호, '2차원 Laplace 변환 경계요소법에 의한 이종재료 접합면 균열의 충격해석', 대한기계학회 논문집 A권, 제18권, 제5호, 1994, pp.1158-1168
  20. Lin, X. and Ballmann, J., 'A Numerical Scheme for Axisymmetric Elastic Wave in Solids', Wave Motion, Vol.21, 1955, pp.115-126 https://doi.org/10.1016/0165-2125(94)00046-8
  21. Chen, Y.M., 'Numerical Computation of Dynamic Stress Intensity Factors by a Largrangian Finite Difference Method(the HEMP code)', Eng. Frac. Mech., Vol.7, 1975, pp.653-660 https://doi.org/10.1016/0013-7944(75)90021-1
  22. Chen, E.P., 'Elastodynamic Response of a Penny-Shaped Crack in a Cylinder of Finite Radius', Int. J. Eng. Sci., Vol. 17, 1979, pp. 379-385 https://doi.org/10.1016/0020-7225(79)90074-0
  23. Kim, K.S., 'Dynamic Propagation of a Finite Crack', Int. J. Solids Structures, Vol.15, 1979, pp.685-699 https://doi.org/10.1016/0020-7683(79)90067-2
  24. Chen, E.P. and Sih, G.C., 'Transient Response of Cracks to Impact Loads', Sih, G.C. (ed.), Mechanics of Fracture 4, Elastodynamic Crack Problems, Noordhoff, Leyden, 1977
  25. Shindo, Y., 'Axisymmetric Elastodynamic Response of a Flat Annular Crack to Normal Impact Waves', Eng. Frac. Mech., Vol.19, No.5, 1984, pp.837-848 https://doi.org/10.1016/0013-7944(84)90165-6
  26. 김경수, 박준범, 정배훈, '응력파에 의한 구조부재의 동적파괴 해석', 한국전산구조공학회 논문집 제10권, 제4호, 1997, pp.195-203
  27. 이억섭, 조종두, 홍성경, 성낙중, '응력확대계수와 J-적분 결정을 위한 코스틱스방법의 실험조건에 관한 연구', 대한기계학회 논문집 A권, 제18권, 제9호, 1994, pp.2331-2338
  28. 백운철, 황재석, '이방성비가 큰 직교이방성체의 반 무한 균열에 대한 동적 응력확대계수에 관한 연구,' 대한기계학회 논문집 A권, 제24권, 제6호, 2000, pp. 1557-1564
  29. Ross, C.T.F., Finite Element Programs for Axisymmetric Problems in Engineering, Ellis Horwood, Halsted Press, New York, 1984
  30. Bakr A.A., The Boundary Integral Equation Method in Axisymmetric Stress Analysis Problems, Springer-Verlag, Berlin, 1986
  31. Achenbach, J.D., Wave Propagation in Elastic Solids, North-Holland, Amsterdam, 1975
  32. Graff K.F., Wave Motion in Elastic Solids, Dover, New York, 1975
  33. Tada, H., Paris, P.C., and Irwin, G.R., The Stress Analysis of Cracks Handbook, Del Research, Hellertown, 1973