DOI QR코드

DOI QR Code

Computer Simulation of Nano Material Behavior using Molecular Dynamics

분자동력학을 이용한 나노 재료의 변형거동 전산모사

  • Published : 2003.06.01

Abstract

Keywords

References

  1. Computer simulation of liquids Allen,M,A.;Tildesley,D.J.
  2. 대한금속학회회보 v.11 no.6 분자동력학의 개요와 재료공학에의 응용 (Ⅰ)(Ⅱ) 김영석
  3. J. Chem. Phys. v.31 Studies in molecular dynamics. I. General method Alder,B.J.;Wainwright,T.E. https://doi.org/10.1063/1.1730376
  4. Int. J. Fract. Mech. v.6 no.2 An atomistic study of fracture Chang,R. https://doi.org/10.1063/1.1730376
  5. Phys. Rev. Lett. v.44 no.14 Computer simulation of crack propagation Paskin,A.;Gohar,A.;Dienes,G.J. https://doi.org/10.1103/PhysRevLett.44.940
  6. Mater. Sci. Eng. v.2 A molecular-dynamic simulation of crack-tip extention : the brittle-to-ductile transition, Modeling Simul Cheug,K.S.;Yip,S. https://doi.org/10.1103/PhysRevLett.44.940
  7. 大阪大學 博士學位論文 金屬結晶 の破壞機構の分子動力學法による硏究 中谷
  8. Wear v.188 Friction and tool wear in nano-scale machining - a molecular dynamic approach Maekawa,K.;Itoh,A. https://doi.org/10.1016/0043-1648(95)06633-0
  9. J. of Trib. v.116 Molecular dynamic investigation of two-dimensional atomic-scale friction Kim,D.E.;Suh,N.P. https://doi.org/10.1016/0043-1648(95)06633-0
  10. Computer Phys. Communications v.147 On the parallelization of molecular dynamic codes Trabado,G.P.;Plata,O.;Zapata,E.L. https://doi.org/10.1115/1.2927200
  11. Theory of simple liquids(2nd Ed.) Hansen,J.P.;McDonald,I.R. https://doi.org/10.1016/S0010-4655(02)00381-8
  12. Proc. Ray. Soc. v.106A The determination of molecular fields. I. From the variation of the viscosity of a Gas with Temperature Lennard Jones,J.E.
  13. Surface Sci. v.144 Molecular dynamical calculation of crack propagation in segregated grain boundaries of iron Ishida,Y.;Mori,M.;Hashimoto,M.
  14. Phys. Rev. A v.5 no.134 Interstitials and vacancies in α-iron Johnson,R.A. https://doi.org/10.1016/0039-6028(84)90719-2
  15. Phys. Rev. B v.29 no.12 Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals Daw,M.;Baskes,M. https://doi.org/10.1103/PhysRevB.29.6443
  16. Phil. Mag. A v.50 A simple empirical N-body potential for transition metals Finnis,M.W.;Sinclair,J.E. https://doi.org/10.1103/PhysRevB.29.6443
  17. Phys. Rev. Lett. v.56 no.6 New empirical model for the structural properties of silicon Tersoff,J. https://doi.org/10.1080/01418618408244210
  18. Phys. Rev. B v.31 no.8 Computer simulation of local order in condensed phases of silicon Stillinger,F.H.;Weber,T.A. https://doi.org/10.1103/PhysRevLett.56.632
  19. Phys. Rev. v.159 Computer 'Experiments' on classical fluids. I. Thermidynamical properties of Lennard-Jones Molecules Verlet,L. https://doi.org/10.1103/PhysRevB.31.5262
  20. J. Chem. Phys. v.72 no.4 Molecular dynamics simulations at constant pressure and/or temperature Andersen,H.C. https://doi.org/10.1103/PhysRev.159.98
  21. Numerical initial value problems in ordinary differential equations Gear,C.W. https://doi.org/10.1063/1.439486
  22. Ph.D thesis, Osaka University The analysis on the deformation behavior of the crystal grain boundary using molecular dynamics Nakatani,A.
  23. Metals and Materials v.5 no.4 Molecular dynamics studies for the generation and the movement of dislocation Kim,Y.S.;Choi,D.Y.;Park,J.Y.
  24. Science v.289 Formation, stability, and breakup of nanojets Moseler,M.;Landman,U. https://doi.org/10.1126/science.289.5482.1165
  25. Nature v.418 Atomistic mechanisms governing elastic limit and incipient plasticity in crystals Li,J.;Van Vliet, K.J.;Zhu,T.;Yip,S.;Suresh.S. https://doi.org/10.1126/science.289.5482.1165
  26. IUTAM2003 Symposium on Mesoscopic Dynamics in Fracture Process and Strength of Materials Three dimensional molecular dynamics simulation of AFM-based lithography process for fabrication of nano components in MEMS applications Kim,Y.S. https://doi.org/10.1038/nature00865
  27. Phys. Stat. Sol. B. v.217 Concurrent coupling of length scales in solid state systems Rudd,R.E.;Broughton,J.Q. https://doi.org/10.1002/(SICI)1521-3951(200001)217:1<251::AID-PSSB251>3.0.CO;2-A
  28. Quasi-molecular modeling Greenspan,D. https://doi.org/10.1002/(SICI)1521-3951(200001)217:1<251::AID-PSSB251>3.0.CO;2-A
  29. KSME Int. J. v.12 no.3 Molecular dynamics simulation for microfracture behavior of material Kim.Y.S.;Park,J.Y.
  30. 대한금속학회회보 v.13 no.7 재료마당 김영석

Cited by

  1. A Study on Deformation Behavior of the Grain-Size Controlled Rheology Material by Using Nanoindenter and AFM vol.13, pp.4, 2004, https://doi.org/10.5228/KSPP.2004.13.4.374