계면활성제를 적용한 오염토양 복원을 위한 모델링 연구 : 생물 복원 공정

Evaluation of Surfactant Addition for Soil Remediation by Modeling Study : II. Bioremediation Process

  • 우승한 (포항공과대학교 화학공학과/환경공학부) ;
  • 박종문 (포항공과대학교 화학공학과/환경공학부)
  • 발행 : 2003.06.01

초록

토양 슬러리 시스템에서 유해물질의 미생물 분해시 계면활성제를 고려한 속도론적 모델을 개발하였다. 이 모델은 오염물질과 계면활성제의 분배, 미생물의 수용액상, 미셀상, 흡착상 분해, 계면활성제 첨가에 의한 대상물질 용해, 대상물질의 물질전달을 포함한다. 오염물질은 phenanthrene, 계면활성제는 Triton X-100, Triton NP-10, Igepal CA-720, Brij 30을 적용하였다. 미셀상 분해가 존재할 경우 매우 낮은 미셀상 이용도에서도 전체 분해속도를 크게 향상시킬 수 있었다. 미셀상 이용성이 존재하는 경우와 그렇지 않은 경우 모두 계면활성제 농도가 증가할수록 수용액상 농도가 감소하여 전체 분해속도는 감소하였다. 흡착상 분해는 수용액상 분해나 미셀상 분해와 비교하여 전체 분해속도에 미치는 영향이 적었다. 본 모델은 계면활성제를 이용한 오염토양 생물복원시 계면활성제 탐색과 최적 공정 설계에 활용될 수 있을 것이다.

A kinetic model for evaluating effects of surfactant on the biodegradation of HOC(hazardous organic chemicals) in soil-slurry systems was developed. The model includes the partition of HOC and surfactant, the dissolved-, micellar-, and sorbed-phase biodegradation, the enhanced solubilization of HOC by surfactant addition, and the mass transfer of HOC. Phenanthrene as HOC and Trition X-100, Tergitol NP-10, Igepal CA-720, and Brij 30 were used in the model simulations. The biodegradation rate was increased even with a small micellera-phase bioavailability. The biodegradation was not greatly enhanced due to decreased aqueous HOC concentration by increasing surfactant dose in both cases with and without micellar-phase bioavailability. The effect of sorbed-phase biodegradation on total biodegradation rate was not highly important compared to aqueous- and micellar-phase biodegradation. The model can be applied for surfactant screening and optimal design of surfactant-based soil bioremediation process.

키워드

참고문헌

  1. Cemiglia, C. E. 'Biodegradation of polycyclic aromatic hydrocarbons', Biodegradation, 3, pp. 351-368 (1992) https://doi.org/10.1007/BF00129093
  2. Keith, L. H. and Telliard, W. A. 'Priority pollutants: I-a perspective view', Environ. Sci. Technol., 13, pp. 416-423 (1979) https://doi.org/10.1021/es60152a601
  3. Cookson, J.T. Jr., Bioremediation Engineering: Design and Application, McGraw-Hill New York (1995)
  4. Carmichael, L. M. and Pfaender, F. K-. 'The effect of inorganic and organic supplements on the microbial-degradation of phenanthrene and pyrene in soils', Biodegradation, 8, pp. 1-13 (1997) https://doi.org/10.1023/A:1008258720649
  5. West, C. C. and Harwell, J. F. 'Surfactant and subsurface remediation', Environ. Sci. Technol., 26, pp. 2324-2330 (1992) https://doi.org/10.1021/es00036a002
  6. Volkering, F, Breure, A. M., and Rulkens, W. H. 'Microbiological aspects of surfactant use for biological soil remediation', Biodegradation, 8, pp. 401-417 (1998) https://doi.org/10.1023/A:1008291130109
  7. Ramaswami, A., Ghoshal, S., and Luthy, R. G. 'Mass transfer and bioavailability of PAH compounds in coal tar NAPL-slurry systems', Environ. Sci. Technol., 31, pp. 2268-2276 (1997) https://doi.org/10.1021/es9608508
  8. Bramwell, D. P. and Laha, S. 'Effects of surfactant addition on the biomineralization and microbial toxicity of phenanthrene', Biodegradation, 11, pp. 263-277 (2000) https://doi.org/10.1023/A:1011121603049
  9. Guha, S. and Jaffe, P. R. 'Biodegradation kinetics of phenan threne partitioned into the micellar phase of nonionic surfactant', Environ. Sci. Technol., 30, pp. 605-611 (1996) https://doi.org/10.1021/es950385z
  10. Guha, S. and Jaffe, P. R. 'Bioavailability of hydrophobic compounds partitioned into the micellar phase of nonionic surfactants', Environ. Sci. Technol., 30, pp. 1382-1391 (1996) https://doi.org/10.1021/es950694p
  11. Chen, P., Pickard, M. A., and Gray, M. R. 'Surfactant inhibition of bacterial growth on solid anthracene', Biodegradation, 11, pp. 341-347 (2000) https://doi.org/10.1023/A:1011160004678
  12. Liu, Z., Jacobson, A. M., and Luthy, R. G. 'Biodegradation of Naphthalene in Aqueous Nonionic Surfactant Systems', Appl. Environ. Microbiol., 61, pp. 145-151 (1995)
  13. Willumsen, P. A. and Arvin, E. 'Kinetics of degradation of surfactant-solubilized fluoranthene by a Sphingomonas paucimobilis', Environ. Sci. Technol., 33, pp. 2571-2578 (1999) https://doi.org/10.1021/es981022c
  14. Volkering, F., Breure, A. M., Vanandel, J. G., and Rulkens, W. H. 'Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatichydrocarbons', Appl. Environ. Micmbiol., 61(5), pp. 1699-1705 (1995)
  15. Guha, S., Jaffe, P. R., and Peters, C. A. 'Bioavailability of mixtures of PAHs partitioned into the micellar phase ofa nonionic surfactant', Environ. Sci. Technol., 32(15), pp. 2317-2324 (1998) https://doi.org/10.1021/es971093w
  16. Zhang, W., Maier, W. J., and Miller, R. M. 'Effect of rhamnolipids on the dissolution, bioavailability, and biodegradation of phenanthrene'. Environ. Sci. Technol., 31, pp. 2211-2217 (1997) https://doi.org/10.1021/es960687g
  17. Guerin, W. F. and Boyd, S. A. 'Differential bioavailability of soil-sorbed naphthalene to two bacterial species', Appt. Environ. Microbiol., 58(4), pp. 1142-1152 (1992)
  18. Woo, S. H., Park, J. M., and Rittmann, B. E. 'Evaluation of the interaction between biodegradation and sorption of phenan threne in soil-slurry systems', Biotechnol. Bioeng., 73, pp. 12-24 (2001) https://doi.org/10.1002/1097-0290(20010405)73:1<12::AID-BIT1032>3.0.CO;2-W
  19. Stelmack, P. L., Gray, M. R., and Pickard, M. A. 'Bacterial adhesion to soil contaminants in the presence of surfactants', Appl. Environ. Microbiol., 65(1), pp. 163-168 (1999)
  20. Schwarzenbach, R. P., Gschwend, P. M., and Imboden, D. M. Environmental Organic Chemistry, John Wiley & Sons, New York (1993)
  21. Laha, S. and Luthy, R. G. 'Effects of nonionic surfactants on the solubilization and mineralization of phenanthrene in soil water systems', Biotechnol. Bioeng., 40, pp. 1367-1380 (1992) https://doi.org/10.1002/bit.260401111
  22. Rittmann, B. E. and McCarty, P. L., Environmental Biotechnology: Principles and Applications, McGraw-Hill Inc, New York (2001)
  23. Woo, S. H. and Rittmann, B. E. 'Microbial energetics and stoichiometry for biodegradation of aromatic compounds involving oxygenation reactions', Biodegradation, 11, pp. 213-227 (2000) https://doi.org/10.1023/A:1011162830401