참고문헌
- Annals of the Institute of Statistical Matheamtics v.20 Some distribution free statistics and their application to the selection problem Bartlett,N.S.;Govindarajulu,Z. https://doi.org/10.1007/BF02911626
- CHAKRABORTI, S. AND DESU, M. M. (1989). 'A class of distribution free tests for testing homogeneity against ordered alternatives', Statistics & Probability Letters, 6, 251-256 https://doi.org/10.1016/0167-7152(88)90070-3
- DAVID, H. A. (1981). Order Statistics, 2nd ed., John Wiley and Sons
- DESHPANDE, J. V. AND MEHTA, G. P. (1983). 'Non-parametric procedures to select popula-tions better than a known standard', Sankhya, B45, 330-334
- GUPTA, S. S. AND NAGEL, K. (1971). 'On some contributions to multiple decision theory and related topics', In Statistical Decision Theory and Related Topics (S. S. Gupta and J. Yackel, eds.), 79-102, Academic Press, New York
- GUPTA, S. S., NAGEL, K. AND PANCHAPAKESAN, S. (1973). 'On the order statistics from equally correlated normal variables', Biometrika, 60, 403-413 https://doi.org/10.1093/biomet/60.2.403
- GILL, A. N. AND MEHTA, G. P. (1993). 'Selecting populations better than the control : Scale parameter case', Statistics & Decisions, 11, 251-271
- HSU, J. C. (1980). 'Robust and non-parametric subset selection procedures', Communications in Statistics-Theory and Methods, A9, 1439-1459
- HSU, J. C. (1981). 'A class of non-parametric subset selection procedures', Sankhya, B43, 235-244
- KOZIOL, J. A. AND REID, N. (1977). 'On the asymptotic equivalence of two ranking methods for k-sample linear rank statistics', The Annals of Statistics, 5, 1099-1106 https://doi.org/10.1214/aos/1176343998
- LANN, P. VANDER (1991a). 'The efficiency of subset selection of an almost best treatment' COSOR-Memoranda, 19, Eindhoven University of Technology, Eindhoven
- LANN, P. VANDER.(1991b). 'Subset selection of an e-best population : Efficiency results', COSOR-Memoranda, 19, Eindhoven University of Technology, Eindhoven
- LANN, P. VANDER (1992). 'Subset selection of an almost best treatment', BiometricaI JournaI, 34, 647-656 https://doi.org/10.1002/bimj.4710340602
- LEHMANN, E. L. (1963). 'A class of selection procedures based on ranks', Mathematicsche Annalen, 150, 268-275 https://doi.org/10.1007/BF01396995
- MAHAMUNULA, D. M. (1967). .'Some fixed-sample ranking and selection problems', The AnnaIs of MathematicaI Statistics, 38, 1079-1091 https://doi.org/10.1214/aoms/1177698778
- PURI, P. S. AND PURl, M. L. (1968). 'Selection procedures based on ranks : Scale parameter case', Sankhya, A30, 291-302
- PURI, P. S. AND PURl, M. L. (1969). 'Multiple decision procedures based on ranks for certain problems in analysis of variance', The AnnaIs of Mathematical Statistics, 40, 619-632 https://doi.org/10.1214/aoms/1177697730
- RIZVI, M. H., SOBEL, M. AND WOODWORTH, G. G. (1968). 'Non-parametric ranking proce-dures for comparison with a control', The Annals of Mathematical Statistics, 39, 2075-2093 https://doi.org/10.1214/aoms/1177698035
- RIZVI, M. H. AND WOODWORTH, G. G. (1970). 'On selection procedures based on ranks: counter examples concerning least favourable configurations', The Annals of Mathemat-ical Statistics, 41, 1942-1951 https://doi.org/10.1214/aoms/1177696695
- SANTNER, T. J. (1975). 'A restricted subset selection approach to ranking and selection procedures', The AnnaIs of Statistics, 3, 334-339 https://doi.org/10.1214/aos/1176343060