Sexing and Cell Cycle Induction Hanwoo Fetal Fibroblast Cells

한우 섬유아세포의 성 판별 및 세포주기 유도 분석

  • Published : 2003.03.01

Abstract

For somatic cell nuclear transfer in Hanwoo, fetal fibroblast cell lines were established from 35, 50, 70 and 90-day fetuses of Korean native cattle. The sex of these fetal fibroblast cells were analyzed by PCR using Y-specific primers and confirmed that two cell lines were female and the other two cell lines were male. Karyotyping of these cell lines indicates that the chromosome numbers of fetal fibroblast cells were not affected by passage number and more than 80% of fetal fibroblast cells have normal chromosome number. To evaluate Go stage in cell cycle of fetal fibroblast cells, Western blotting was performed to detect the expression level of PCNA which is known to be expressed in all cell cycle stages except G$_{0}$ stage. Following serum starvation or confluent culture for 7 days, fetal fibroblast cells were effectively reached to G$_{0}$ stage. The cell cycle was resumed after culture of these Go stage-fetal fibroblast cells with normal medium. These results indicates that fetal fibroblast cells originated from Hanwoo were successfully isolated and culture system and induction of cell cycle of these cells were established for somatic cell nuclear transfer in Hanwoo.woo.

본 연구에서는 한우 태아의 시기별로 35일령, 50일령, 70일령 및 90일령의 fetal fibroblast cell line을 생산하였고, bovine-specific primer와 Y chromosome-specific primer를 이용하여 PCR에 의해 성을 판별하여 각각 암수 2 line의 한우 fetal fibroblast cell line을 확립하였다. 이들 cell line을 계대배양하여 passage number가 10 이상에서 염색체 분석을 실시하였는데 모두에서 80%이상의 세포가 60개의 정상 염색체수의 나타내어 계대배양이 karyotype에 영향을 미치지 않는 것으로 나타났다. Serum starvation과 confluent 배양 방법을 이용하여 Go 상태로 유도되었는지 확인하기 위해 PCNA antibody를 이용하여 Western blotting 분석을 실시하였는데 PCNA 발현이 현저히 감소되는 것을 확인할 수 있었고, 다시 정상 medium으로 환원시켰을 때 세포분열이 재개되어 Go상태로 유도되었음을 확인할 수 있었다. 또한 serum stravation 방법이 conflent한 배양방법보다 PCNA 발현양이 적은 것으로 나타나 좀더 효율적인 Go 상태 세포 주기 조절방법으로 판명되었다.

Keywords

References

  1. Campell, K. H. S., Ritchie, W. A. and Wilmut, I. 1993. Nuclear-cytoplasmic interactions during the first cell cycle of nuclear transfer reconstructed bovine embryos: Implications for deoxyribonucleic acid replication and development. BioI. Reprod., 49:933-942 https://doi.org/10.1095/biolreprod49.5.933
  2. Campell, K. H. S., McWhir, J., Ritchie, W. A. and Wilmut. I. 1996. Sheep cloned by nuclear transfer from a cultured cell line. Nature, 380: 64-66
  3. Campbell, K. H. S. and Wilmut, I. 1996. Totipotency or multipotentiality of cultured cells: Applicationas and progress. Theriogenology, 47:63-72
  4. Cho, J. K., Lee, B. C., Park, J. I., Lim, J. M., Shin, S. J., Kim, K. Y., Lee, B. D. and Hwang, W. S. 2002. Development of bovine oocytes reconstructed with different donor somatic cells with or without serum starvation, Theriogenology, 57:1819-1828
  5. Dominko, T., Mitalipova, M., Haley, B., Beyhan, Z., Memili, E. and First, N. 1998. Bovine oocyte as a universal recipient cytoplasm in mammalian nuclear transfer. Theriogenology, 49:385
  6. Garry, F., Adams, B., Holland, M. D., Hay, W. W., McCann, J. P., Wagner, A. and Seidal Jr., G. E. 1998. Arterial oxygen, metabolite and energy regulatory hormone concentrations in cloned bovine fetuses. Theriogenology, 49:321
  7. Han, Y. M., Kang, Y. K., Koo, D. B. and Lee, K. K. 2003. Nuclear reprogramming of cloned embryos produced in vitro, Theriogenology, 59:33-44
  8. Kato, Y., Tani, T., Sotomaru Y, Kurokawa, K., Kato, J., Doguch, H., Yasue, H. and Tsunoda, Y. 1998. Eight calves cloned from somatic cells of a single adult. Science, 282:2095-2098
  9. Katska, L., Bochenek, M., Kania, G., Rynska, B. and Smorag, Z. 2002. Flow cytometric cell cycle analysis of somatic cells primary cultures established for bovine cloning. Theriogenology, 58:1733-1744
  10. Kill, I. R., Bridger, J M., Campbell, K. H. S., Maldonado-Codina, G. and Hutchison, C. J. 1991. The timing of the formation and usage of replicase clusters in S-phase nuclei of human diploid fibroblasts. J. Cell Science, 100:869-876
  11. Miller, J. R. and Koopman, M. 1990. Isolation and characterization of two male-specific DNA fragments from the bovine gene. Anim. Genet., 21:77-82
  12. Mitalipova, M, Dominko, T., Haley, B., Beyhan, Z., Memili, E. and First, N. 1998. Bovine oocyte cytoplasm reprograms somatic cell nuclei from various mammalian species. Theriogenology, 49:389
  13. Reed, K. C., Matthews, M. E., Mann, D. A., Beaton, S. and Matthews, M. E. 1989. Determination of genetic sex in ruminants using Y-chromosome specific polynucleotides. Patent Cooperation Treaty No. WO 89/07154
  14. Schnieke, A. E., Kind, A. J., Ritchie, W. A., Mycock, K., Scott, A. R., Ritchie, M., Wilmut, I., Colman, A. and Campbell, K. H. S. 1997. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblast. Science, 278:2130-2133
  15. Stice, S. L., Robl, J. M., Ponce de Leon, F. A., Jerry, J., Golueke, P. G., Cibelli, J. B. and Kane, J. J. 1998. Cloning: New breakthroughs leading to commercial opportunity. Theriogenology, 49: 129-138
  16. Vignon, X., Chesne, P., LeBourhis, D., Heyman, Y. and Renard, J. P. 1998. Developmental potential of bovine embryos reconstructed with somatic nuclei from cultured skin and muscle fetal cells. Theriogenology, 49:392
  17. Wells, D. N., Laible, G., Tucker, F. C., Miller, A. L., Oliver J. E., Xiang T., Forsyth, J. T., Berg, M. C., Cockrem, K., L'Huillier, P. J., Tervit, H. R. and Oback, B. 2003. Coordination between donor cell type and cell cycle stage improves nuclear cloning efficiency in cattle. Theriogenology, 59:45-59
  18. Wilmut, I., Schieke, A. E., McWhir, J., Kind, A. J. and Campell., K. H. S. 1997. Viable offspring derived from fetal and mammalian cells. Nature, 385:810-814 https://doi.org/10.1038/385810a0