Seasonal Dynamics of the Seagrass Zostera marina on the South Coast of the Korean Peninsula

  • Published : 2003.06.01

Abstract

Although seagrasses are relatively abundant, few studies have been conducted on seagrass physiology and ecology in Korea. Zostera marina is the most abundant seagrass species, widely distributed throughout all coastal areas of the Korean peninsula. To examine seasonal dynamics and spatial variations of eelgrass, Zostera marina distributed on the coast of Korea, morphological characteristics, biomass, tissue nutrient constituents, leaf productivity and environmental factors were monitored monthly from the eelgrass beds in Kabae Bay and Kosung Bay on the south coast of the Korean peninsula from June 2001 to June 2002. Eelgrass density, biomass, morphological characteristics, leaf productivities, and tissue nutrient constituents exhibited clear seasonal variations, and these seasonal trends reflected seasonal changes in water temperature. Eelgrass shoot density and biomass at Kabae Bay site showed more obvious seasonal trends than Kosung Bay. No strong seasonality in Kosung Bay site appeared to be caused by high water temperature ($>30{\circ}C$) during summer months at this site. Despite differences in nutrient availabilities between two study sites, eelgrass biomass and leaf productivities were not significantly different between study sites, and this lack of spatial variations implies that the ambient nutrient availabilities at the present study sites are in excess of seagrass nutrient demand. Eelgrass tissue N content and sediment pore water DIN concentrations exhibited reverse relationship at the present study. This reverse relationship suggests in situ nutrient concentrations are not good indicator of nutrient availabilities, and regeneration and turnover rates of sediment nutrients are also important factors to determine nutrient availabilities at the site.

Keywords

References

  1. Mar. Ecol. Prog. Ser. v.138 Nutrient limitation of Philippine seagrasses (Capr Bolinao, NW Philippines): in situ experimental evidence. Agawin, N.S.R.;C.D. Duarte;M.D. Fortes https://doi.org/10.3354/meps138233
  2. Mar. Ecol. Ser. v.146 Spatial and temporal variations in nutrient limitation of seagrass Posidonia oceanica growth in the NW Mediterranean. Alcoverro, T.;J. Roniro J;C.M. Duarte;N.I. Lopez https://doi.org/10.3354/meps146155
  3. Mar. Biol. v.8 Plasmatic resestance and rate of respiration and photosyntheses of Zostera marina at different salinities and temperatures. Biebl, R.;C.P. McRoy https://doi.org/10.1007/BF00349344
  4. Mar. Biol. Lett. v.4 Effects of temperature on the photosynthesis-irradiance curve of the Australian seagrass, Heterozostera tasmanica. Bulthuis, D.A.
  5. J. Exp. Mar. Biol. Ecol. v.53 Effects of in situnitrogen and phosphorus enrichment of the sediments on the seagrass Heterozostera tasmanica (Martins ex Aschers.) den Hartog in Western Port, Victoria, Australia. Bulthuis, D.A.;W.J. Woelkerling https://doi.org/10.1016/0022-0981(81)90019-8
  6. Mar. Ecol. Prog. Ser. v.105 Comparative effects of water-column nitrate enrichment on eelgrass Zostera marina, shoalgrass Halodule wrightii, and widgeongrass Ruppia maritima. Burkholder, J.M.;H.B.Jr. Glasgow;J.E. Cooke https://doi.org/10.3354/meps105121
  7. Mar. Ecol. Prog. Ser. v.81 Water-column mitrate enrichment promotes decline of eelgrass Zosoera marina, evidence from seasonal mesocosm experiments. Burkholder, J.M.;K.M. Mason;H.B.Jr. Glasgow https://doi.org/10.3354/meps081163
  8. Estuaries v.18 The effects of i situ light reduction on the growth of two species of subtropical seagrasses, Thalassia testudinum and Halodule wrightii. Czerny, A.B.;K.H. Dunton https://doi.org/10.2307/1352324
  9. Oecologia (Berl). v.55 Photosynthetic rosponses of Zostra marina L. (eelgrass) to in situ manipulations of light intensity. Dennison, W.C.;R.S. Alberte https://doi.org/10.1007/BF00384478
  10. Mar. Biol. v.94 Sedinent ammonium availability and eelgrass (Zostera marina) growth. Dennison, W.C.;R.C. Aller, R. Alberte https://doi.org/10.1007/BF00428254
  11. Aquat. Bot. v.7 Physiological aspects of primary production in seagrasses. Drew, E.A. https://doi.org/10.1016/0304-3770(79)90018-4
  12. J. Exp. Mar. Biol. Ecol. v.143 Production ecology of Ruppia maritima L. s.l. and Halodule wrightii Aschers. in two subtropical estuaries. Dunton, K.H. https://doi.org/10.1016/0022-0981(90)90067-M
  13. Mar. Biol. v.120 Seasonal growth and biomass of the subtropical seagrass Halodule wrightii in relation to continuous measurements of underwater irradiance. Dunton, K.H. https://doi.org/10.1007/BF00680223
  14. Aquat. Bot. v.24 Photosymthetic temperature acclimation in two coexisting seagrasses, Zostera marina L., and Ruppia maritima L. Evans, A.S.;K.L. Webb;P.A. Pengale https://doi.org/10.1016/0304-3770(86)90095-1
  15. Aquat. Bot. v.37 Eelgrass condition and turbidity in the Dutch Wadden Sea. Giesin, W.B.J.T.;M.M. van Katwijek;C. den Hartog https://doi.org/10.1016/0304-3770(90)90065-S
  16. Aquat. Bot. v.12 Growth and organic production of eelgrass (Zostera marina L.) in temperate waters of the Pacific coast of Japan. Ⅲ. The kinetics of nitrogen uptake. Iizumi, H.;A. Hattori https://doi.org/10.1016/0304-3770(82)90020-1
  17. Nature v.296 Mineralization of organic matter in the sea-bed ―the role of sulphate reduction. Jorgensen, B.B. https://doi.org/10.1038/296643a0
  18. Orgon. Est. v.9 The autecology and production dynamics of eelgrass (Zostera marina L.) in Netarts bay Kentula, M.E.;C.D. McIntire
  19. J. Exp. Mar. Biol. Ecol. v.210 Effects of in situ light reduction on the maintenance, growth and partitioning of carbon resources in Thalassia testudinum. Lee, K.-S.;K.H. Dunton https://doi.org/10.1016/S0022-0981(96)02720-7
  20. Mar. Ecol. Prog. Ser. v.143 Production and carbon reserve dynamics of the seagrass Thalassia testudinum in Corpus Christi Bay, Texas, USA. Lee, K.-S.;K.H. Dunton https://doi.org/10.3354/meps143201
  21. Mar. Biol. v.134 Influence of sediment nitrogen-availability on carbon and nitrogen dyanmics in the seagrass Thalassia testudinum. Lee, K.-S.;K.H. Drnton https://doi.org/10.1007/s002270050540
  22. Limnol. Oceanogr. v.44 Inorganec nitrogen acquisition in the seagrass Thalassia testudinum: Development or a whileplant nitrogen budget. Lee, K.-S.;K.H. Dunton https://doi.org/10.4319/lo.1999.44.5.1204
  23. Mar. Ecol. Prog. Ser. v.196 Effects of nitrogen enrichment on biomass allocation, growth, and leaf morphology of the seagrass Thalassia testudinum. Lee, K.-S.;K.H. Dunton https://doi.org/10.3354/meps196039
  24. The seagrasses of the republic of Korea. In: world Atlas of Seagrasses: Present status and future conservation Lee, K.-S.;S.Y. Lee;Green, EP.(ed.);F.T. Short(ed.);M.D. Spalding
  25. Aquat. Bot. v.31 Seasonal changes in the standing crop and chlorophyll content of Thalassia testudinum Banks ex Konig and its epiphytes in the morthern Gulf of Mexico. Macauley, J.M.;J.R. clark;W.A. Price https://doi.org/10.1016/0304-3770(88)90017-4
  26. J. Exp. Mar. Biol. Ecol. v.101 Effects of temperature on photosynthesis and respiration in eelgrass (Zostera marina L.). Marsh, J.A.Jr;W.C. Dennison;R.S. Alberte https://doi.org/10.1016/0022-0981(86)90267-4
  27. Production ecology and physiology of seagrasses. McRoy, C.P.;C. McMillan;McRoy, D.P.(ed.);Helfferich, C.(ed.)
  28. Science v.222 Chesapeake Bay: An unprecedented decline in submerged aquatic vegetation. Orth, R.J.;K.A. Moore https://doi.org/10.1126/science.222.4619.51
  29. Aquat. Bot. v.24 Seasonal and year-to-year vatiations in the growth of Zostera marina L. (eelgrass) in the lower Chesapeake Bay. Orth, R.J.;K.A. Moore https://doi.org/10.1016/0304-3770(86)90100-2
  30. A manual of chemical and Biological methods for seawater analysis. Parsons, T.R.;Y. Maita;C.M. Lalli
  31. Aquat. Bot. v.15 Phenology of eelgrass, Zostera marina L. along latitudinal gradients on North America. Phillips, R.C.;C. McMillan;K.W. Bridges https://doi.org/10.1016/0304-3770(83)90025-6
  32. Alaska. Aquat. Bot. v.16 The seagrass, Zostera marina L.: Plant morphology and Bed structure in relation to sediment ammonium in Izembek Lagoon. Short, F.T. https://doi.org/10.1016/0304-3770(83)90090-6
  33. Aquat. Bot. v.16 Effects of sediment nutrients on seagrasses: literature review and mesocosn experiment. Short, F.T. https://doi.org/10.1016/0304-3770(83)90090-6
  34. Zostera marina. Limnol. Oceanogr. v.40 Mesocosm esperiments quantify the effects of eutrophication on eelgrass Short, F.T.;DmM. Burdick;J.E. Kaldy https://doi.org/10.4319/lo.1995.40.4.0740
  35. Global Seagrass Research Methods Short, F.T.;R.G. Coles;C. Pergent-Martini
  36. Bot. Mar. v.27 Nitrogen uptake by leaves and roots of the seagrass Zostera marina L. Short, F.Tl;C. P. McRoy https://doi.org/10.1515/botm.1984.27.12.547
  37. F. Aquat. Bot. v.24 the loss of seagrass in Cockbum Sound, Western Australia. Ⅲ. The effect of epiphytes on productivity of Posidonia australis Hook. Silderstein, K;A.W. Chiffings;A.J. McComb https://doi.org/10.1016/0304-3770(86)90102-6
  38. Indonesia. Mar. Ecol. Prog, Ser. v.134 Nutrient uptake by leaves and roots of the seagrass Thalassia hemprichii in the Spermonde Archipelago Stapel, J.;T.L. Aarts, B.H.M. van Duynhoven;J.D. de Groot;P.H.V. van den Hoogen;M.A. Hemmings https://doi.org/10.3354/meps134195
  39. Mar. Biol. v.128 Nutrient resorption from seagrass leaves. Stapel, J;M.A. Hemminga
  40. Mar. Ecol. Prog. Ser. v.149 Leaf versus root nitrogen uptake by the surfgrass Phyllospadix torreyi. Terrados, J.;S.L. Williams https://doi.org/10.3354/meps149267
  41. Bot. Mar. v.33 Spatial and temporal pattems in plant standing stock and primary production in a temperate seagrass system. Thom, R.M. https://doi.org/10.1515/botm.1990.33.6.497
  42. Mar. Ecol. Prog. Ser. v.75 Productivity and biomass of Thalassia testudinum as related to water column nutrient availability and epiphyte level: Field observations and experimental studies. Tomasko, D.A.;B.E. Lapointe https://doi.org/10.3354/meps075009
  43. J. Exp. Mar. Biol. Ecol. v.217 Growth and physiological responses of three seagrass seagrass speciesto elevated sediment nutrients in Moreton Bay, Australia. Udy, J.W.;W.C. Dennison https://doi.org/10.1016/S0022-0981(97)00060-9
  44. Mar. Ecol. Prog. Ser. v.185 Responses of seagrass to nutrients in the Great Garrier, Australia. Udy JW;W.C. Dennison;W.J. Lee Long;L.J. McKenzie https://doi.org/10.3354/meps185257
  45. Aquat. Bot. v.28 Seasonal dynamics and leaf growth of Zostera noltii Hornem. a perennial intertidal seagrass. Vermaat, J.E.;M.J.M. Hootsmans;P.H. Nienhuis https://doi.org/10.1016/0304-3770(87)90006-4
  46. Seaxonal variation in the intertidal seagrass Zostera noltii Hormem.:coupling demographic Vernaat, J.E.;F.C.A. Verhagen
  47. Mar. Techn. Soc. J. v.17 Production ecology of seagrass communities in the lower Chesapeake Bay. Wetzel, R.G.;P.A. Penhale
  48. Thalassia testudinum Konig. Aquaculture v.4 Methods for the study of the growth and production of turtle grass Zieman, J.C.
  49. Hamdbook of seagrass biology: an ecosystem perspective. productivity in seagrssses:methods and rates Zieman, J.C.;R.G. Wetzel;R. C. Phillips(ed.);C. P. McRoy(ed.)