심폐바이패스 시 고탄산분압과 고관류법이 뇌대사에 미치는 영향

The Effects of Hypercapnia and High Flow on Cerebral Metabolism During Cardiopulmonary Bypass

  • 강도균 (인제대학교 의과대학 부산백병원 흉부외과학교실) ;
  • 최석철 (부산가톨릭대학교 보건과학대학 임상병리학과) ;
  • 윤영철 (인제대학교 의과대학 부산백병원 흉부외과학교실) ;
  • 최국렬 (인제대학교 데이터정보학과) ;
  • 정신현 (다정의원) ;
  • 황윤호 (인제대학교 의과대학 부산백병원 흉부외과학교실) ;
  • 조광현 (인제대학교 의과대학 부산백병원 흉부외과학교실)
  • 발행 : 2003.07.01

초록

심폐바이패스의 재가온 시기 동안 뇌산소 탈포화가 수술 후 신경학적 합병증 발생의 원인 중 한가지라고 보고된 바 있다. 따라서 심폐바이패스 동안 뇌산소 탈포화를 예방해 줌으로써 수술 후 신경학적 합병증 발생을 줄일 수 있으리라 생각된다. 본 연구는 심폐바이패스 동안 뇌산소 탈포화를 예방해주는 방법인 고탄산분압과 고관류가 뇌대사에 미치는 영향을 비교하기 위해 실시되었다. 대상 및 방법: 심장수술을 시행할 36명의 성인 환자들을 대상으로 심폐바이패스의 재가온 시기 동안 동맥혈액의 고탄산분압군(Pa$CO_2$ 45~50mmHg, n=18)과 고관류군(2.75 L/ $m^2$/min, n=18)으로 나누었다. 전체 환자들에 대해 중대뇌동맥 혈류 속도, 뇌동정맥혈 산소함량 차이, 뇌산소 대사율, 뇌산소 운반율, S-100 $\beta$ 농도 증가율, 뇌정맥혈 산소 탈포화도 등을 심폐바이패스 전, 심페바이패스 실시 10분, 재가온-1기(비인두 온도: 33$^{\circ}C$), 재가온-2기(비인두 온도; 37$^{\circ}C$), 심폐바이패스 종료 직후 등의 다섯 시기에 측정하였다. 그리고 수술 후 섬망 발생률과 지속시간 역시 조사하여서 위의 모든 변수들과 함께 양 그룹간에 비교하였다. 결과: 고탄산분압군이 고관류군 보다 재가온 시기 동안 중대뇌동맥 혈류 속도(157.88$\pm$10.87 vs 120.00$\pm$6.18%, p=0.006), 뇌정맥혈 산소분압(41.01$\pm$2.25 vs 32.02$\pm$1.67 mmHg, p=0.03) 및 포화도(68.01$\pm$2.75 vs 61.28$\pm$2.87%, p=0.03), 뇌산소 운반비율(110.84$\pm$7.41 vs 81.15$\pm$8.11%, p=0.003)이 유의하게 더 높았다. 재가온 동안 뇌동정맥 산소함량 차이(4.0$\pm$0.30 vs 4.84$\pm$0.38mg/dL, p=0.04), S-100 $\beta$ 증가율(391.67$\pm$23.40 vs 940.0$\pm$17.02%, p=0.003), 뇌정맥혈 산소 탈포화도(2명 vs 4명, p=0.04), 수술 후 섬망증의 지속시간(18 vs 34 hr, p=0.02)은 고탄산분압군이 고관류군에 비해 상대적으로 낮았다. 결론: 상기한 결과들을 비교 분석한 바 심폐바이패스 시 고탄산분안법이 고관류법 보다 뇌조직에 산소공급을 더 많이 해줌으로써 뇌대사가 상대적으로 원활하여 신경학적 합병증 발생률이 낮은 것으로 사료된다.

Recent studies have demonstrated that cerebral desaturation during rewarming period of CPB was associated with postoperative neurologic dysfunction. The prevention of cerebral desaturation during CPB may reduce the incidences of neurologic and neuropsychological complications. The present study was prospectively undertaken to compare the clinical effects between two strategies (hypercapnic CPB and high flow CPB) to prevent cerebral desaturation for establishing a proper CPB technique. Material and Method: Thirty-six adult patients scheduled for elective cardiac surgery were randomized into either hypercapnic (Pa$CO_2$ 45~50mmHg, n=18) or high flow group (flow rate 2.75 L/ $m^2$/min and Pa$CO_2$ 35~40mmHg, n=18) during rewarming period of CPB. In each patient, middle cerebral artery blood flow velocity ( $V_{MCA}$), cerebral arteriovenous oxygen content difference (C(a-v) $O_2$), modified cerebral metabolic rate for oxygen (MCMR $O_2$), cerebral oxygen transport rate ( $T_{E}$ $O_2$), incidence of cerebral desaturation (internal jugular bulb blood oxygen saturation $\leq$ 50%), increased rate of S-100 $\beta$ concentration, and arterial and internal jugular bulb blood gas were measured during the five phases of the operation; Pre-CPB, CPB-10 min (steady-state CPB, nasopharyngeal temperature 29~3$0^{\circ}C$), Rewarm-1 (rewarming phase, nasopharyngeal temperature 33$^{\circ}C$), Rewarm-2 (nasopharyngeal temperature 37$^{\circ}C$), and CPB-off. Incidence of postoperative delirium and duration were assessed in all patients. All variables were compared between the two groups. Result: $V_{MCA}$ (157.88$\pm$10.87 vs 120.00$\pm$6.18%, p=0.006), internal jugular bulb $O_2$ saturation (68.01$\pm$2.75 vs 61.28$\pm$2.87%, p=0.03) and $O_2$ tension (41.01$\pm$2.25 vs 32.02$\pm$ 1,67 mmHg, p=0.03), and $T_{E}$ $O_2$(110.84$\pm$7.41 vs 81.15$\pm$8.11%, p=0.003) at rewarming periods were higher in the hypercapnic group than in the high flow group. C(a-v) $O_2$ (4.0$\pm$0.30 vs 4.84$\pm$0.38 mg/dL, p=0.04), COE (0.36$\pm$0.03 vs 0.42$\pm$0.03, p=0.04), increased rate of S- 100$\beta$ (391.67$\pm$23.40 vs 940.0$\pm$17.02%, p=0.003), and incidence of cerebral desaturation (2 vs 4 patients, p=0.04) at rewarming periods, and duration of postoperative delirium (18 vs 34 hr, p=0.02) were low in the hypercapnic group compared to the high flow group. Conclusion: These results indicate that hypercapnic CPB may provide relatively diminished cerebral injury and beneficial effects for cerebral metabolism relatively compared to high flow CPB.low CPB.

키워드

참고문헌

  1. Mahanna EP, Blumenthal JA, White WD, Clancy CP, Smith LR, Newman MF. Defining neuropsychological dysfunction after coronary artery bypass grafting. Ann Thorae Surg 1996;61: 1342-7.
  2. Roach GW, Kanchuger M, Mora Mangano C, Newman M, Mussmeier N. Adverse cerebral outcomes after coronary bypass surgery. N Engl J Med 1996;335:1857-63.
  3. Croughwell ND, Newman MF, Blumenthal JA, White WD, Lewis JB. Jugular bulb saturation and cognitive dysfunction after cardiopulmonary bypass. Ann Thorac Surg 1994;58: 1702-8.
  4. Newman MF, Croughwell ND, Blumenthal JA, White WD, Lewis JB, Smith LR. Effect of aging on cerebral autoregulation during cardiopulmonary bypass: association with postoperative cognitive dysfunction. Circulation 1994;90(part 2):11-243-9.
  5. Endoh H, Shimoji K. Changes in blood flow velocity in the middle cerebral artery during nonpulsatile hypothermic cardiopulmonary bypass. Stroke 1994;25:403-7.
  6. Bruder N, Cohen B, Pellissier D, Francois G. The effect of hemodilution on cerebral blood flow velocity in anesthetized patients. Anesth Analg 1998;86:320-4.
  7. Sheinberg M, Kanter MJ, Robertson CS. Continuous moni-to ring of jugular venous oxygen saturation in head-injured patients. J Neurosurg 1992;76:212-7.
  8. CroughweJl ND, Smith LR, Quill T, et al. The effect of temperature on cerebral metabolism and blood flow in adults during cardiopulmonary bypass. J Thorac Cardiovasc Surg 1992: 103:549-54.
  9. Croughwell ND, Frasco P, Blumenthal JA, Leone BJ, White WD, Reves JG. Warming during cardiopulmonary bypass is associated with jugular bulb desaturation. Ann Thorac Surg 1992;53:827-31.
  10. Meyer JS, Gotoh F, Ebihara S, Tomita M. Effects of anoxia on cerebral metabolism and electrolytes in man. Neurology 1965; 15:892-901.
  11. Murkin JM, Farrar JK, Tweed W A, Mckenzie FN, Guiraudon G. Cerebral autoregulation and flow/metabolism coupling during cardiopulmonary bypass: the influence of PaC02 Anesth Analg 1987;66:825-32.
  12. Prough DS, Rogers AT, Stump DA, Mills SA, Gravlee GP, Taylor C. Hypercarbia depresses cerebral oxygen consumption during cardiopulmonary bypass. Stroke 1990;21: 1162-6.
  13. Enomoto S, Hindmen BJ, Dexter F, Smith T, Cutkomp 1. Rapid rewarm causes an increase in the cerebral metabolic rate for oxygen that is temporarily unmatched by cerebral blood flow: A study during cardiopulmonary bypass in rabbits. Anesthesiol 1996;84: 1392-1400.
  14. Schell RM, Kern PH, Greeley WJ, et al. Cerebral blood flow and metabolism during cardiopulmonary bypass. Anesth Anal 1993;76:849-65.
  15. Usui A, Kato K, Abe T, Murase M, Tanaka M, Takeuchi E. 5-100B protein in blood and urine during open-heart surgery. Clin Chern 1989;35:1942-4.
  16. Georgiadis D, Berg M, Kowatscheve E, Bomer A. Predictive value of 5-100;J and neuron specific enolase serum level for adverse neurologic outcome after cardiac surgery. J Thorac Cardiovasc Surg 2000;119:138-47.
  17. Blomquist S, Johnsson P, Luhrs P. The appearance of 5-100 protein in serum during and immediately after cardiopulmonary bypass surgery. J Cardiothorac Vase Anesth 1997; 11:699-703.
  18. Kadoi Y, Saito S, Goto F, Fujita N. Decrease in jugular venous oxygen saturation during normothermic cardiopulmonary bypass predicts short-term postoperative neurologic dysfunction in elderly patients. J Am Coil Cardiol 2001; 38: 1405-5.
  19. Plochl W, Cook DJ. Quantification and distribution of cerebral emboli during cardiopulmonary bypass in the swine: the impact of PaCOz. Anesthesiology 1999;90: 183-90.
  20. Cook DJ, Plochl W, Orszulak TA. Effect of temperature and PaC02 on cerebral embolization during cardiopulmonary bypass in swine. Ann Thorac Surg 2000;69:415-20.