니켈도금된 탄소섬유 강화 에폭시 수지 복합재료의 충격 특성

Impact Behaviors of Ni-plated Carbon Fibers-reinforced Epoxy Matrix Composites

  • 박수진 (한국화학연구원 화학소재연구부) ;
  • 김병주 (한국화학연구원 화학소재연구부) ;
  • 이종문 (전북대학교 고분자공학과)
  • 발행 : 2003.01.01

초록

본 연구에서는 탄소섬유 강화 에폭시 수지 복합재료의 충격 특성 향상을 위해 탄소섬유표면에 전해 및 무전해 니켈도금처리를 하였으며, 이때 각각의 니켈도금법에 따른 충격 특성을 비교 고찰하였다. 도금된 탄소섬유의 표면 특성은 XRD, SEM, 그리고 접촉각 측정을 통해 관찰하였고, 탄소섬유 강화 복합재료의 충격 특성은 Izod형의 충격시험기를 이용하여 분석하였다. 실험결과, 무전해 니켈도금층에는 전해도금층과는 달리 Ni-P 합금이 포함된 것이 XRD를 통하여 확인되었으며, 전해 니켈도금된 탄소섬유가 무전해 니켈도금된 것보다 표면자유에너지가 큰 것이 접촉각 측정을 통해 관찰되었다. 한편, 무전해 니켈도금된 탄소섬유 강화 에폭시 수지 복합재료는 충격강도가 크게 증가하였으나, 전해 니켈도금된 복합재료의 경우는 충격강도가 증가하지 않았다. 이러한 결과는 각각의 도금법에 따른 젖음성의 차이가 탄소섬유 강화 복합재료의 연성을 변화시켜 충격강도 증가에 주요하게 작용되었기 때문으로 사료된다.

In this work, two types of Ni-plating, namely electrolytical and electroless Ni-platings on carbon fiber surfaces, were carried out to enhance the impact resistance of composites. And the comparison between electrolytical and electroless methods on their impact properties of composite system was studied. The surface properties of carbon fibers were characterized using XRD, SEM, and contact angle measurements. The impact behaviors were investigated using an Izod type impact tester. As experimental results, it was observed that electrolessly plated Ni layers had Ni-P alloys on carbon fiber surfaces as revealed by XRD, and electrolytically Ni-plated carbon fibers showed higher surface free energies than those of the electrolessly Ni-plated carbon fibers. In particular, the impact strengths of electrolessly Ni-plated carbon fibers-reinforced plastics were strongly increased. These results were probably due to the difference of wettabilities according to the different types of Ni-plating methods.

키워드

참고문헌

  1. Carbon Fibers, (2nd Ed.) J. B. Donnet;R. C. Bansal
  2. Engineered Materials Handbook v.1 W. S. Smith
  3. Composite Materials handbook(2nd Ed.) M. M. Schwartz
  4. Carbon Fibers and Their Composites E. Fitzer
  5. ACS Advances in Chemistry Series No. 114 Epoxy Resin Chemistry R. S. Bauer
  6. Handbook of Epoxy Resins H. Lee;K. Nevile
  7. Interfacial Forces and Fields: Theory and Applications S. J. Park;J. P. Hsu(ed.)
  8. J. Mater. Sci. v.33 S. J. Park;J. R. Lee https://doi.org/10.1023/A:1004373208656
  9. J. Adhesion Sci. Technol. v.11 E. Hage, Jr.;S. F. Costa;L. A. Pessan https://doi.org/10.1163/156856197X00390
  10. J. Colloid Interface Sci. v.254 S. J. Park;Y. S. Jang;K. Y. Rhee
  11. Carbon v.29 J. B. Donnet;S. J. Park https://doi.org/10.1016/0008-6223(91)90174-H
  12. Polym. Adv. Technol. v.3 J. B. Donner;S. J. Park;W. D. Wang https://doi.org/10.1002/pat.1992.220030705
  13. Carbon v.37 N. Dilsiz;J. P. Wightman https://doi.org/10.1016/S0008-6223(98)00300-5
  14. Compos. Sci. Technol. v.56 G. Lu;X. Li;H. Jiang https://doi.org/10.1016/0266-3538(95)00143-3
  15. Appl. Surf. Sci. v.125 H. Li;H. Chen;S. Dong;J. Yang;J. F. Deng https://doi.org/10.1016/S0169-4332(97)00379-6
  16. J. Colloid Interface Sci. v.237 S. J. Park;Y. S. Jang https://doi.org/10.1006/jcis.2001.7441
  17. Metal Matrix Com-posites E. T. Lynch;J. P. Kershaw
  18. Compos. Sci. Technol. v.59 M. Jahazi;F. Jalilian https://doi.org/10.1016/S0266-3538(99)00057-3
  19. Met. Mater. Proc. v.8 P. R. Soni;T. V. Rajan;P. Ramakrishnan
  20. Polymeric Materials and Processing J. M. Charrier
  21. J. Mater. Sci. v.25 S. Abraham;B. C. Pai;K. G. Satyanarayana;V. K. Vaidyan https://doi.org/10.1007/BF00544221
  22. J. Appl. Electrochem. v.26 K. P. Han;J. L. Fang
  23. J. Non-Cryst. Solids v.281 H. Li;W. Wang;H. Chen;J. F. Deng https://doi.org/10.1016/S0022-3093(00)00430-0
  24. J. Colloid Interface Sci. v.228 S. J. Park;M. H. Kim;J. R. Lee;S. W. Choi https://doi.org/10.1006/jcis.2000.6953