Novel Method for Polystyrene Reactions at Low Temperature

  • 발행 : 2003.04.01

초록

Thermal decomposition reactions of polystyrene using a new heating medium were carried out by a batch system at 190-280 $^{\circ}C$ to clarify the manner in which decomposition is initiated. Polystyrene obtained from a commercial source and low molecular weight compounds obtained from the thermal decomposition were analyzed by GC, GPC, IR, $^{13}$ C-NMR and GC-MS. The main chain underwent virtually no change by heat application. Polystyrene underwent decomposition below its molding temperature and the major decomposition products were 2,4,6-triphenyl-1-hexene (trimer), 2,4-diphenyl-1-butene(dimer) and styrene (monomer). Ethylbenzene, propylbenzene, naphthalene, benzaldehyde, biphenyl and 1,3-diphenylpropane were detected as minor products. This paper presents a new method for examining the decomposition of polystyrene at low temperature into volatile low molecular weight compounds.

키워드

참고문헌

  1. Plastics v.51 no.1 Editor's
  2. J. Food Sci. v.33 J. H. Kahn;E. G. Laroe;H. A. Couner https://doi.org/10.1111/j.1365-2621.1968.tb03637.x
  3. Plast. Massy v.15 no.8 M. A. Markielob;E. I. Siemiensenko
  4. Environ. Health Persp. v.17 J. R. Withey https://doi.org/10.2307/3428617
  5. Eisei Kagaku v.29 no.5 T. Watabe;A. Jiratsuka https://doi.org/10.1248/jhs1956.29.5_247
  6. YGKKAE v.57 no.1 T. Yamada
  7. Shokueishi v.39 no.5 Y. Kawamura;K. Nishi;H. Sasaki;T. Yamada
  8. J. Pent. Res. v.51 A. R. Singh;W. H. Lawrence;J. Autian
  9. Endocrinology v.132 A. V. Krishnau;P. Starhis;S. F. Permuth;L. Tokes;D. Feldman https://doi.org/10.1210/en.132.6.2279
  10. J. Pharm. Sci. v.61 H. W. Lawrence;M. Malik;J. E. Turner;J. Autian https://doi.org/10.1002/jps.2600611103
  11. J. Chromatog. v.255 Shih-Tse Cai;D. C. Locke https://doi.org/10.1016/S0021-9673(01)88306-0
  12. J. Am. Chem. Soc. v.113 K. D. Henry;J. P. Quinu;F. D. Mclafferty https://doi.org/10.1021/ja00014a043
  13. Toxicol. Appl. Pharmacol. v.29 A. R. Singh;W. H. Lawrence;J. Autian https://doi.org/10.1016/0041-008X(74)90159-8
  14. Toxicol. Appl. Pharmacol. v.46 R. J. Kociba;D. G. Keys;J. E. Beyer;R. M. Carreon;C. E. Qada;D. A. Dittenber;R. P. Kalnins;L. E. Frauson;C. N. Park;S. D. Barnard;R. A. Hummel;C. G. Humiston https://doi.org/10.1016/0041-008X(78)90075-3
  15. J. Appl. Polym. Sci. v.40 S. Sato;T. Murakata;S. Baba;Y. Saito;S. Watanabe https://doi.org/10.1002/app.1990.070401120
  16. Polym. Degrad. Stab. v.58 G. Madras;J. M. Smith;B. J. McCoy https://doi.org/10.1016/S0141-3910(97)00036-0
  17. Polym. Degrad. Stab. v.52 R. S. Lehrle;D. J. Atkinson Bate;P. A. Gardner;M. R. Grimbley;S. A. Groves;E. J. Place;R. J. Williams https://doi.org/10.1016/0141-3910(96)00014-6
  18. J. Appl. Polym. Sci. v.9 N. Grassie;N. A. Weir https://doi.org/10.1002/app.1965.070090315
  19. Nikka H. Hishizaki