Diffraction Gratings of Photopolymers Composed of Polyvinylalcohol or Polyvinylacetate Binder

  • Park, Dong-Hoon (College of Environment & Applied Chemistry, Institute of Natural Sciences, Kyung Hee University) ;
  • Dejun Feng (College of Environment & Applied Chemistry, Institute of Natural Sciences, Kyung Hee University) ;
  • Hanna Yoon (College of Environment & Applied Chemistry, Institute of Natural Sciences, Kyung Hee University) ;
  • Park, Suk-Ho (College of Electronics & Information, Institute of Natural Sciences, Kyung Hee University)
  • Published : 2003.02.01

Abstract

Holographic gratings in two kinds of photopolymers (PPs) were fabricated by optical interference method. Polyvinylalcohol (PVA) and polyvinylacetate (PVAc) were employed as polymer binders and photopolymerization of acrylamide (AA) was confirmed using infrared spectroscopy. Dynamic behavior of the diffraction efficiency was monitored and its temporal stability at room temperature was also observed. Additionally, the temperature dependence of these gratings was investigated in two PPs. The surface topographical change of the photopolymer layer was observed by atomic force microscope (AFM).

Keywords

References

  1. Appl. Opt. v.23 D. J. Cooke;A. A. Ward https://doi.org/10.1364/AO.23.000934
  2. Synth. Metals v.124 P. S. Ramanujam;S. Hvilsted;F. Ujhelyi;P. Koppa;E. Lorincz;G. Erdei;G. Szarvas https://doi.org/10.1016/S0379-6779(01)00454-4
  3. Appl. Opt. v.38 R. K. Kostuk https://doi.org/10.1364/AO.38.001357
  4. Appl. Opt. v.38 Y. Ohe;M. Kume;T. Taguchi;K. Ichimura https://doi.org/10.1364/AO.38.006722
  5. IEEE Journal of Selected Topics in Quantum Electronics v.6 L. Eldada;L. W. Shacklette https://doi.org/10.1109/2944.826873
  6. Appl. Surf. Sci. v.186 T. Lippert;C. David;M. Hauer;T. Masubuchi;H. Masuhara;K. Nomura;O. Nuyken;C. Phipps;J. Robert;T. Tada;K. Tomita;A. Wokaun https://doi.org/10.1016/S0169-4332(01)00656-0
  7. Korea Polym. J. v.8 S. H. Yuk;S. H. Cho
  8. Mater. Lett. v.3520 H. Yao;M. Huang;Z. Chen;L. Hou;F. Gan
  9. Synth. Metals v.127 A. Tork;P. Nagtegaele;T. V. Galstian https://doi.org/10.1016/S0379-6779(01)00600-2
  10. Opt. Comm. v.147 H. Ono;N. Kawatsuki https://doi.org/10.1016/S0030-4018(97)00635-4
  11. Proc. SPIE v.3417 D. J. Lougnotm;C. Turck;C. Leroy-Garel
  12. Korea Polym. J. v.5 S. J. Lee;D. W. Kim;S. Y. Park;S. I. Hong
  13. Korea Polym. J. v.9 H. K. Shim;T. Ahn;H. Y. Lee
  14. Proc. SPIE v.2043 W. J. Gambogi;A. M. Weber;T. J. Trout
  15. Appl. Surf. Sci. v.106 V. Weiss;E. Millul https://doi.org/10.1016/S0169-4332(96)00401-1
  16. Appl. Opt. v.38 S. Blaya;L. Carretero;R. Mallavia;A. Fimia;R. F. Madrigal https://doi.org/10.1364/AO.38.000955
  17. Appl. Opt. v.34 U. S. Rhee;H. J. Caulfield;C. S. Vikram;J. Shamir https://doi.org/10.1364/AO.34.000846
  18. Opt. Comm. v.188 C. Garcia;I. Pascual;A. Costela;I. Garcia-Moreno;A. Fimia;R. Sastre https://doi.org/10.1016/S0030-4018(00)01155-X
  19. Appl. Phys. v.81 V. L. Colvin;R. G. Larson;A. L. Harris https://doi.org/10.1063/1.364378
  20. Macromol. Res. v.10 K. C. Lee;S. E. Lee;B. K. Song https://doi.org/10.1007/BF03218263