공기 갭을 갖는 이방성 매질 위의 사각 마이크로스트립 패치 안테나의 입력 임피던스와 방사패턴에 대한파수 영역 해석

Spectral Domain Analysis of Input Impedance and Radiation Pattern in Rectangular Microstrip Patch Antenna on Anisotropy Substrates with Airgap

  • 윤중한 (인하대학교 IT 신기술연구소) ;
  • 곽경섭 (인하대학교 정보통신공학부)
  • 발행 : 2003.05.01

초록

사각 마이크로스트립 패치 안테나의 입력 임피던스와 방사패턴에 대한 공기 갭과 이방성 기판의 영향을 적분 방정식 공식에 사용하여 연구하였다. 갈러킨 모멘트법을 사용하여 적분 방정식을 해석함으로서 입력 임피던스와 방사패턴을 얻을 수 있다. 기저함수의 선택은 패치 위의 실제 전류밀도와 가장 유사한 형태인 정현적 기저함수를 선택하였다. 전사모의 실험결과로부터 공기 갭의 두께, 기판의 이방성 비와 이방성 기판의 비유전율 변화에 따른 입력 임피던스와 방사패턴의 변화를 나타내었다.

Effects of Airgap and anisotropy substrate on input impedance and radiation pattern of rectangular microstrip patch antenna are studied in terms of an integral equation formulation. The input impedance and radiation pattern of microstrip patch antenna is investigated by using Galerkin's moment method in solving the integral equation. Sinusoidal functions are selected as basis functions, which resemble in the actual standing wave on the Patch. From the numerical results, the variation of input impedance and radiation patterns in the variation of air gap thickness, anisotropy ratio of substrate, and relative permittivity of anisotropy substrate are presented.

키워드

참고문헌

  1. G. A. Deschanps, 'Mcrostrip Mcrowave Antenna,' 3rd USAF Symposium on Antenna, 1953
  2. D. M. Pozar., 'Input Impedance and Mutual Coupling of Rectangular Microstrip Antennas,' IEEE Trans. Antennas Propagat., vol 30, pp. 1191-1196, 1982 https://doi.org/10.1109/TAP.1982.1142934
  3. E. H. Newman and D. Forrai, 'Scattering from a Microstrip Patch,' IEEE Trans. Antenna Propagat.,vol AP-35, No.3, March, pp. 245-251, 1987 https://doi.org/10.1109/TAP.1987.1144084
  4. W. C. Chew and Q. H. Liu, 'Resonance Frequency of a Rectangular Microstrip Patch,' IEEE Trans. Antennas Propagat., vol 36, pp. 1045-1056, 1988 https://doi.org/10.1109/8.7216
  5. P. Perlmutter, S. Shtrikman, and D. Treves, 'Electric Surface Current Model for the Analysis of Microstrip Antennas with Application to Rectangular Elements', IEEE Trans. Antennas Propagat, Vol 33, pp. 301-311, 1985 https://doi.org/10.1109/TAP.1985.1143581
  6. K. D. Targoniski, R. B. Waterhouse, and D. M. Pozar, 'Design of Wideband Aperture Stacked Patch Microstrip Antenna,' IEEE Trans. Antennas Propagat., vol 46, pp. 1245-1251, 1998 https://doi.org/10.1109/8.719966
  7. C. Wood, 'Improved Bandwidth of microstrip Antennas Using Parasitic Elements,' Proc. IEE, vol.127, Pt. H, pp. 231-178, 1980
  8. Y. L. Chow, 'A Design Theory on Broadband Patch Antenna with Slot,' IEEE Trans. Antennas Propagat. Symp. Digest, 1124-1127, 1998 https://doi.org/10.1109/APS.1998.702148
  9. J. P. Daniel, 'Research on Antennas and Array: Structures Rauonnantes,' Antennas and Propagation Society Magazine, vol 35, Feb. pp. 14-38, 1993 https://doi.org/10.1109/74.210827
  10. J. F. Zurcher, 'SSFIP, a Global Concept for High Performance Broadband Planar Antennas,' Electrics Letter, Vol.24, pp. 1433-1435, 1988 https://doi.org/10.1049/el:19880979
  11. K. F. Lee, and J. S. Dahele, 'Mode Characteristic of Annular-Ring and Circular-Disk Micorstrip Antennas with and without an Airgap,' IEEE/AP-S Int. Symp. Digest, pp. 55-58, 1983
  12. Z. Fan and K. F. Lee, 'Spectral Domain Analysis of Rectangular Microstrip Antennas with an Airgap,' Microwave Opt. Technology Lett., vol. 3 pp. 391-392, 1992
  13. K. L. Wong, Y. T. Cheng, and J. S. Row, 'Analysis of a Cylindrical-Rectangular Microstrip Structure with an Airgap,' IEEE Trans. Microwave Theory Tech., vol. 42, No. 6, pp. 1032-1037, June, 1994 https://doi.org/10.1109/22.293573
  14. N. G. Alexopoulos, 'Integrated-Circuit Structure on Anisotropic substrate,' IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp. 847 -881, Oct. 1985 https://doi.org/10.1109/TMTT.1985.1133145
  15. D. M. Pozar, 'Radiation and scattering from a Microstrip Patch on a Uniaxial Substrate,' IEEE Trans. Antennas Propagat., vol. AP-35, pp. 613 -621, June 1987 https://doi.org/10.1109/TAP.1987.1144161
  16. K. L. Wong, J. S. Row, C. W. Kuo, and K. C. Huang, 'Resonance of a Rectangular Microstrip Patch on a Uniaxial Substrate,' IEEE Trans. Microwave Theory Tech., vol. 41, No. 4, pp. 698-701, April, 1993 https://doi.org/10.1109/22.231667
  17. G. A. Kyriacou and J. N. Sahalos, 'Effect of substrate-superstrate uniaxial anisotropy on microstrip structure,' Electron. Lett., vol. 30, no. 19, 1557-1558, 1994 https://doi.org/10.1049/el:19941092
  18. F. Bouttout, F. Benabdelaziz, A. Benghalia, D. Khedrouche and T. Fortaki, 'Uniaxially Anisotropy Substrate Effects on Resonance of Rectangular Microstrip Patch Antenna,' Electron. Lett., vol. 35, no. 4, 255-256, 1999 https://doi.org/10.1049/el:19990026
  19. A. V. Proano, D. L. Torre, J. C. da, S. Lacava, and L. Cividanes, 'Analysis of a Rectangular Slot in the Ground Plane of a Stripline with Uniaxial Substrates,' IEEE/AP-S Int. Symp., pp. 1604-1607, 2000 https://doi.org/10.1109/APS.2000.874540
  20. 윤중한, 이상목, 안규철, 곽경섭, '공기 갭을 갖는 일축성 매질 위의 마이크로스트립 패치 안테나의 공진 주파수,' 통신학회 놈문지 제25권, 12A호, pp. 1759-1765, 2000
  21. C. T. Tai, Dyadic Green Functions in Electromagnetic Theory, IEEE Press, 1994
  22. T. Itoh, Numerical Techniques for Microwave and Millimeter-Wave Passive Structure, Wiley, 1989
  23. R. F. Harrington, Field Computation by Moment Methods, New York Macmillan, 1968
  24. R. Garg, P. Bhartia, I. Bahl, A. Ittipiboon, Microstrip antenna design handbook, Artech House, 2001