Secretory Production of hGM-CSF with a High Specific Biological Activity by Transgenic Plant Cell Suspension Culture

  • Kwon, Tae-Ho (Basic Science Research Institute, Chonbuk National University) ;
  • Shin, Young-Mi (Division of Biological Sciences, Chonbuk National University) ;
  • Kim, Young-Sook (Institute for Molecular Biology and Genetics, Chonbuk National University) ;
  • Jang, Yong-Suk (Bank for Cytokine Research, Chonbuk National University) ;
  • Yang, Moon-Sik (Division of Biological Sciences, Chonbuk National University)
  • Published : 2003.04.01

Abstract

The human granulocyte-macrophage colony stimulating factor (hGM-CSF) gene was introduced into tobacco plants. The cell suspension culture was established from leaf-derived calli of the transgenic tobacco plants in order to express and secrete a biologically active hGM -CSF. The recombinant hGM-CSF from the transgenic plant cell culture (prhGM-CSF) was identified as a yield of about 180 ${\mu}$g/L in the culture filtrate, as determined by ELISA. The addition of 0.5 g/L polyvinylpyrrolidone (PVP) to the plant cell culture medium both stabilized the secreted prhGM-CSF and increased the level of production approximately 1.5-fold to 270 ${\mu}$g/L. The biological activity of the prhGM-CSF was confirmed by measuring the proliferation of the hGM-CSF-dependent cell line, TF-1. Interestingly, the specific activity of the prhGM-CSF was estimated to be approximately 2.7 times higher than that of a commercially available preparation from E. coli.

Keywords

References

  1. The Cytokine Hanbook Granulocytemacrophage colony-stimulating factor Rasko,J.E.;N.M.Gough;Thomson,A.(ed.)
  2. DNA v.6 Expression and purification of native human granulocyte-macrophage colony-stimulating factor from an Escherichia coli secretion vector Libby,R.T.;G.Braedt;S.R.Kronheim;C.J.March;D.L.Urdal;T.A.Chiaverotti;R.J.Tushinski;D.Y.Mochizuki;T.P.Hopp;D.Cosman https://doi.org/10.1089/dna.1987.6.221
  3. Gene v.55 Expression, purification and characterization of recombinant murine granulocyte-macrophage colony-stimulating factor and bovine interleukin-2 from yeast Price,V.;D.Mochizuki;C.J.March;D.Cosman;M.C.Deeley;R.Klinke;W.Clevenger;S.Gillis;P.Baker;D.Urdal https://doi.org/10.1016/0378-1119(87)90288-5
  4. FEBS Lett. v.259 Expression of human granulocyte-macrophage colony-stimulating factor gene in insect cells by a baculovirus vector Chiou,C.J.;M.C.Wu https://doi.org/10.1016/0014-5793(90)80020-J
  5. J. Microbiol. Biotechnol. v.10 Expression of murine GM-CSF in recombinant Aspergillus niger Kim,M.J.;T.H.Kwon;Y.S.Jang;M.S.Yang;D.H.Kim
  6. Mol. Cells v.7 Establishment of the transgenic tobacco cell suspension culture system for producing murine granulocytemacrophage colony-stimulating factor Lee,J.S.;S.J.Choi;H.S.Kang;.W.G.Oh;K.H.Cho;T.H.Kwon;D.H.Kim;Y.S.Jang;M.S.Yang
  7. Protein Express. Purif. v.19 Production and characterization of biologically active human GM-CSF secreted by genetically modified plant cells James,E.A.;C.Eang;Z.Wang;R.Reeves https://doi.org/10.1006/prep.2000.1232
  8. Trends Biotechnol. v.15 Plants as bioreactors for biopharmaceuticals: regulatory considerations Miele,L. https://doi.org/10.1016/S0167-7799(97)84202-3
  9. Curr. Opin. Biotechnol. v.10 Production of new/modified proteins in transgenic plants Herbers,K.;U.Sonnewald https://doi.org/10.1016/S0958-1669(99)80029-9
  10. Curr. Opin. Biotechnol. v.11 Foreign protein production in plant tissue cultures Doran,P.M. https://doi.org/10.1016/S0958-1669(00)00086-0
  11. Nat. Biotechnol. v.16 A humanized monoclonal antibody produced in transgenic plants for immunoprotection of the vagina against genital herpes Zeitlin,L.;S.S.Olmsted;T.R.Moench;M.S.Co;B.J.Martinell;V.M.Paradkar;D.R.Ruseell;C.Queen;R.A.Cone;K.J.Whaley https://doi.org/10.1038/4344
  12. Glycobiology v.9 N-Glycosylation of a mouse IgG expressed in transgenic tobacco plants Cabanes-Macheteau,M.;A.C.Fitchette-Laine;C.Loutelier-Bourhis;C.Lange;N.D.Vine;J.K.Ma;P.Lerouge;L.Faye https://doi.org/10.1093/glycob/9.4.365
  13. Crit. Rev. Plant Sci. v.15 Mechanisms of intracellular protein transport and targeting in plant cells Kermode,A.R.
  14. Appl. Biochem. Biotech. v.50 Bioprocessing technology for plant cell suspension cultures Su,W.W. https://doi.org/10.1007/BF02783455
  15. New Phytol. v.134 Manipulating secondary metabolism in cultured plant cells Yeoman,M.M.;C.L.Yeoman https://doi.org/10.1111/j.1469-8137.1996.tb04921.x
  16. Proc. Natl. Acad. Sci. USA v.82 Isolation of cDNA for a human granulocyte-macrophage colony-stimulating factor by functional expression in mammalian cells Lee,F.;T.Yokota;T.Otsuka;L.Gemmell;N.Larson;J.Lhu;K.Arai;D.Rennick https://doi.org/10.1073/pnas.82.13.4360
  17. Proc. Natl. Acad. Sci. USA v.76 Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans Figurski,J.J.;D.R.Helinski https://doi.org/10.1073/pnas.76.4.1648
  18. Plant Physiol. v.81 Transformation of tobacco, tomato, potato, and Arabidopsis thaliana using a binary Ti vector system An,G.;B.D.Watson;C.C.Chiang https://doi.org/10.1104/pp.81.1.301
  19. Physiol. Plant. v.15 A revised medium for rapid growth and bioassays with tobacco tissue cultures Murashige,T.;F.Skoog https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  20. Molecular Cloning: A Laboratory Manual(2nd ed.) Sambrook,J.;E.Fritsch;T.Maniatis
  21. Nature v.227 Cleavage of structural proteins during the assembly of the head of bacteriophage T4 Laemmli,U.K. https://doi.org/10.1038/227680a0
  22. J. Cell Physiol. v.140 Establishment and characterization of a unique human cell line that proliferates dependently on GM-CSF, IL-3, or erythropoietin Kitamura,T.;T.Tange;T.Terasawa;S.Chiba;T.Kuwaki;K.Miyagawa;Y.F.Piao;K.Miyazono;A.Urabe;F.Takaku https://doi.org/10.1002/jcp.1041400219
  23. Biotechnol. Bioeng. v.54 Production of monoclonal antibodies by tobacco hairy roots Wongsamuth,R.;P.M.Doran https://doi.org/10.1002/(SICI)1097-0290(19970605)54:5<401::AID-BIT1>3.0.CO;2-I
  24. J. Immunol. Methods v.226 Affinity-purification of a TMV-specific recombinant full-size antibody from a transgenic tobacco suspension cultue Fischer,R.;Y.C.Liao;J.Drossard https://doi.org/10.1016/S0022-1759(99)00058-7
  25. Biotechnol. Bioprocess Eng. v.4 Effect of culture conditions on monoclonal antibody production form genetically modified tobacco suspension cultures Liu,F.;J.M.Lee https://doi.org/10.1007/BF02933749
  26. J. Ferment. Bioeng. v.86 Light-controlled expression of a foreign gene using the chalcone synthase promoter in tobacco BY-2 cells Kurata,H.;T.Takemura;S.Furusaki;C.I.Kado https://doi.org/10.1016/S0922-338X(98)80137-2
  27. J. Biosci. Bioeng. v.87 Expression of a carrot invertase gene in tobacco suspension cells cultivated in batch and continuous culture conditions Verdelhan des Molles,D.;V.Gomord;M.Bastin;L.Faye;D.Coutois https://doi.org/10.1016/S1389-1723(99)80036-X
  28. Protein Expr. Purif. v.13 Secretion of biologically active human interleukin-2 and interleukin-4 from genetically modified tobacco cells in suspension culture Magnuson,N.S.;P.M.Linzmaier;R.Reeves;G.An;K.HayGlass;J.M.Lee https://doi.org/10.1006/prep.1998.0872
  29. Protein Expr. Purif. v.15 Processing of preproricin in transgenic tobacco Sehnke,P.C.;R.J.Ferl https://doi.org/10.1006/prep.1998.0993
  30. Appl. Microbiol. Biotechnol. v.52 Production of functional human 1-antitrypsin by plant cell culture Terashima,M.;Y.Murai;M.Kawamura;S.Nakanishi;T.Stoltz;L.Chen;W.Drohan;R.L.Rodriguez;S.Katoh https://doi.org/10.1007/s002530051554
  31. Biochem. Eng. J. v.4 Effect of osmotic pressure on human a1-antitrypsin production by plant cell culture Terashima,M.;Y.Ejiri;N.Hashikawa;H.Yoshida https://doi.org/10.1016/S1369-703X(99)00036-4
  32. Protein Expr. Purif. v.7 Enhanced recovery of a secreted mammalian protein from suspension culture of genetically modified tobacco cells Magnuson,N.S.;P.M.Linzmaier;J.Gao;R.Reeves;G.An;J.M.Lee https://doi.org/10.1006/prep.1996.0030
  33. Biotechnol. Bioeng. v.48 Appocahes for increasing the solution stability of proteins Manning,M.C.;J.E.Matsuura;B.C.Kendrick;J.D.Meyer;J.J.Dormish;M.Vrkljan;J.R.Ruth;J.F.Carpenter;E.Shefter https://doi.org/10.1002/bit.260480513
  34. Biochemistry v.24 Mechanism of poly(ethyleneglycol) interaction with proteins Arakawa,T.;S.N.Timasheff https://doi.org/10.1021/bi00345a005
  35. Biotechnol. Lett. v.19 The effect of oplyvinylpyrrolidone(PVP) on the heavy chain monoclonal antibody production from plant suspension cultures LaCount,W.;J.An;J.M.Lee https://doi.org/10.1023/A:1018383524389
  36. Biochem. Biophys. Res. Comm. v.98 Bacitracin: an inhibitor of insulin degrading activity of glutathione insulin transhydrogenase Roth,R.A. https://doi.org/10.1016/0006-291X(81)90858-5
  37. Biotechnol. Bioprocess. Eng. v.4 Effect of bacitracin on growth and monoclonal antibody production by tobacco hairy roots and cell suspensions Sharp,J.M.;P.M.Doran https://doi.org/10.1007/BF02933748
  38. Cancer v.65 Lymphokines and cytokines as cancer treatment. Immunotherapy realized Borden,E.C.;P.M.Sondel https://doi.org/10.1002/1097-0142(19900201)65:3+<800::AID-CNCR2820651328>3.0.CO;2-Y
  39. Natl. Immun. Cell Growth Regul. v.9 Lessons from the clinical trials of interleukin-2 Parkinson,D.R.
  40. J. Am. Med. Assoc. v.271 Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2 Rosenberg,S.A.;J.C.Yang;.S.L.Topalian;D.J.Schwartzentruber;J.S.Weber;D.R.Parkinson;C.A.Seipp;J.H.Einhorn;D.E.White https://doi.org/10.1001/jama.271.12.907