용존산소 농도 조절이 미생물유래 Transglutaminase 생산에 미치는 영향

The Effect of Dissolved Oxygen on Microbial Transglutaminase production by Streptoverticillium morbaraense

  • 유재수 (전북대학교 농과대학 응용생물공학부) ;
  • 전계택 (강원대학교 자연과학대학 생명과학부) ;
  • 정용섭 (전북대학교 농과대학 응용생물공학부)
  • 발행 : 2003.04.01

초록

Streptoverticillium morbaraene로부터 미생물 유래 transglutaminase 생산을 위하여 최적의 용존산소 농도를 구명하였다. 용존산소는 용존산소 농도 자동 조절 시스템에 의해 조절되었다. 발효 중 용존산소 농도 조절을 위하여 통기속도는 0.3-3.9 L/min, 교반속도는 260-360 rpm으로 각각 범위를 설정하였다. 용존산소 농도를 조절한 다양한 회분식 배양에서 용존산소가 20%일 때 최대 미생물유래 transgiutaminase 생산이 가능하였다. 최분배양에서 용존산소 농도를 20%로 조절한 경우 미생물유래 transglutaminase 생산은 2.12 U/mL이었고, 용존산소를 조절하지 않은 회분식 배양의 미생물유래 transglutaminase 생산보다 1.1배 향상되었다. 역시 가장 높은 미생물유래 transglutaminase 생산은 용존산소를 20%로 조절한 유가식 배양에서 가능하였으며, 용존산소를 조절하지 않은 회분식 배양의 미생물유래 transglutaminase 생산에 비교해서 1.3배 증가하였다. 최대 건조균체량과 미생물유래 transglutaminase 생산은 각각 13.2 g/L와 2.6 U/mL이었다. 용존산소를 20%로 용존산소 농도 자동 조절 시스템에 의해 조절한 유가식 배양은 미생물유래 transgiutaminase 생산에 적절하였으며 다른 미생물 배양에도 적용할 수 있을 것으로 판단된다.

The effect of dissolved oxygen(DO) on microbial transglutaminase(mTG) production by Streptoverticillium morbaraense was studied in on-line computer controlled fermentation system. In order to control dissolved oxygen during fermentation, the agitation speed and aeration rate of 2.5 L fermenter ranged from 260 to 360 rpm and 0.3 to 3.9 L/min, respectively. The maximum microbial transglutaminase production was obtained at controlled 20% of dissolved oxygen among the various dissolved oxygen controlled batch cultures tested. The production of microbial transglutaminase at controlled 20% of dissolved oxygen was about 2.12 U/mL which was 1.1 times higher than that obtained in batch culture without control of dissolved oxygen. Also, the highest microbial transglutaminase production was obtained in fed-batch cultures in which dissolved oxygen was controlled at 20%, and it was improved almost 1.3 times in comparison with that without control of dissolved oxygen. Maximal dry cell weight and microbial transglutaminase production were 13.2 g/L and 2.6 U/mL, respectively. Finally, it was also found that fed-batch fermentation at controlled 20% of dissolved oxygen showed a good performance for the microbial transglutaminase production by on-line computer controlled fermentation system which may be generally applicable to other microbial cultures.

키워드

참고문헌

  1. Biosci. Biotechnol. Biochem. v.58 Purification and characterization of a tissue-type transglutaminase from red sea bream(Pagrus Major) Yasueda, H.;Y. Kumazawa;M. Motoki https://doi.org/10.1271/bbb.58.2041
  2. Agric. Biol. Chem. v.53 no.10 Purification and characteristics of a novel transglutaminase derived from microorganism Ando, H.;M. Adachi;K. Umeda;A. Matssura;M. Nonaka;R. Tanaka;M. Motoki https://doi.org/10.1271/bbb1961.53.2613
  3. Biochem. J. v.299 A rapid and simple method for the purification of transglutaminase from Streptoverticillum morbarense Berber, U.;U. Jucknischke;S. Putzien;H. L. Fuchsbauer https://doi.org/10.1042/bj2990825
  4. Shouhing Kougok v.12 Study of new protein ingredient by transglutaminase Somet, K. A
  5. Biotechnology for Improved Foods and Flavors(ACS Symposium Series 637) The usefulness of transglutaminase for food processing Kuraishi, C.;J. Sakamoto;T. Soeda
  6. Fisheries Sci. v.62 Determination of ε-(γ-glutamyl)lysine in several fish eggs and muscle proteins Kumazwa, Y.;H. Sakamoto;H. Kawauiri;M. Motoki
  7. Food Sci. Technol. v.9 Transglutaminase and its use for food processing Motoki, M.;K. Seguro https://doi.org/10.1016/S0924-2244(98)00038-7
  8. Nippon Shokuhin Kaga. Kogku Kaishi v.43 Strength enhancement by addition of microbial transglutaminase during chinese noodle processing Sakamoto, H.;K. Yamazaki;C. Kaga;Y. Yamamoto;R. Ito;Y. Kurosawa https://doi.org/10.3136/nskkk.43.598
  9. Enz. Microb. Technol. v.18 Oxygen transfer conditions in the productin of alpha-amylase by Bacillus amyloliquefaciens Milner, J. A.;D. J. Martin;A. Smith https://doi.org/10.1016/0141-0229(95)00155-7
  10. Biotechnol. Bioeng. v.8 Dissolved oxygen measurements in pilot and production-scale novobiocin fermentation Steel, M. R.;W. D. Maxon https://doi.org/10.1002/bit.260080109
  11. Process Biochem. v.18 Problems of mass and momentum transfer in large fermentors Vadar, F.
  12. Principles of fermentatin technolgy, (2nd ed.) Stanbury, P. F.;A. Whitaker;S. J. Hall
  13. Enz. Microb. Technol. v.14 Influence of dissolved oxygen concentration on the biosynthesis of cephalosporin Zhou, W.;K. Holzhauer-Rieger;M. Dors;K. Schugerl https://doi.org/10.1016/0141-0229(92)90103-U
  14. Kor. J. Appl. Microbiol. Biotechnol. v.28 no.5 Effect and development of automatic control of dissolved oxygen on growth of phellinus linteus WI-001 Kim J. L.;H. K. Kwon;G. T. Chin;K. K. Lee
  15. Biopro. Eng. v.22 Understanding the morphology Pazouki, M.;T. Panda https://doi.org/10.1007/s004490050022
  16. Biotechnol. Bioeng. v.35 Morphological measurements on filamentous microorganism by fully automatic image analysis Packer, H. L.;C. R. Thomas https://doi.org/10.1002/bit.260350904
  17. Adv. Biochem. Eng. Biotechnol. Modeling the growth of filamentous fungi Nielsen, J
  18. Biotechnol. Prog. v.14 Influence of morphology on product formation in Aspergillus awamori during submerged fermentations Claus, L. Johansen.;L. Coolen;J. H. Hunik https://doi.org/10.1021/bp980014x
  19. Biotechnol. Bioeng. v.57 Agitator speed and dissolved oxygen effects in xanthan fermentations Amanullah, a.;B. Tuttiett;A. W. Nienow https://doi.org/10.1002/(SICI)1097-0290(19980120)57:2<198::AID-BIT8>3.0.CO;2-I
  20. Biotechnol. Tech. v.11 Dissolved oxygen concentration controlled feeding of substrate into Kluyveromyces fragilis culture Barberis. S. E.;R. F. Segova https://doi.org/10.1023/A:1018421123983
  21. J. Ferment. Bioeng. v.79 no.4 Effect of dissolved oxygen and pH on moranoline(1-Deoxynojirimycin) fermentation by Streptomyces lavendulae Masahiko, K.;T. Masashi;E. Yohji https://doi.org/10.1016/0922-338X(95)94004-B
  22. J. Biosci. Bioeng. v.88 no.2 Effecto of pH and dissolved oxygen on cellulose production by Acetobacter xylinum BRC5 in agitated culture Hwang, J. L.;Y. K. Yang;J. K. Hwang;Y. R. Pyun;Y. S. Kim https://doi.org/10.1016/S1389-1723(99)80199-6
  23. Transglutaminase Folk, J. E
  24. A Practical Guide to Enzymology Suelter, C. H.
  25. Anal. Chem. v.31 Dinitrosalicylic acid reagent for determination for reducing sugar Miller, G. L. https://doi.org/10.1021/ac60147a030
  26. Anal. Chem. v.28 no.3 Colorimetric method for determination of sugars and related substances Dubois, M.;K. A. Gilles;J. K. Hamilton;P. A. Rebers;F. Smith https://doi.org/10.1021/ac60111a017
  27. Biotechnol. v.10 Recombinant protein expressin in high cell density fed-batch cultures of E. coli Yee, L.;H. W. Blanch https://doi.org/10.1038/nbt1292-1550
  28. Appl. Microbiol. Biotechnol. v.49 Fed-batch fermentation dealing with nitrogen limitation in microbial fementation dealing with nitrogen limitation in microbial transglutaminase production by Streptoveriticillium mobaraense Zhu, Y., Rinzema;A. Tramper;E. de Bruin;J. Bol https://doi.org/10.1007/s002530051165