수소생산균 Enterobacter cloacae YJ -1의 분리 및 특성

Isolation and Characterization of Hydrogen Producing Bacterium

  • 이기석 (전남대학교 공과대학 환경공학과) ;
  • 강창민 (초당대학교 공과대학 환경공학과) ;
  • 정선용 (전남대학교 공과대학 환경공학과)
  • 발행 : 2003.04.01

초록

수소를 생산하기 위하여 자연계로부터 분리된 균주는 Enterebacter cloacae로 동정되었으며 이 균주를 YJ-1으로 명명하였다. 수소발생량을 기준하여 이 균주의 최적 성장조건을 살펴본 바, 회분식 배양에서 $35^{\circ}C$, pH 7.5로 나타났다. 따라서 탄소원의 농도를 변화시킨 결과, 최대의 수소생산은 2% glucose, 4% sucrose, 5% fructose에서 각각 950 mL/L, 1000 mL/L, 948 mL/L을 얻어졌으며, 초기에 비해 2.5배 높은 생산량을 얻을 수 있었다. 유기산 축척에 따른 pH 저하를 막기 위해 완충제인 phosphate를 첨가한 결과, 50 mM에서 가장 높은 수소를 생산할 수 있었다. 반회분식 배양으로 50%의 새로운 배지를 8 hr 간격으로 치환하여 48시간동안 수행한 결과 1920 mL/L의 수소를 생산할 수 있었다. Yeast extract는 균체성장에 중요한 성분으로서 0.5%에서 최대의 수소를 생산할 수 있었다. 발효 중 생성된 유기산은 대부분 formic acid, acetic acid이고 적은 양의 propionic acid가 생성되었다.

The hydrogen-producing bacterium was isolated from fresh water and identified as Enterobacter cloacae. The isolated was named Enterobacter cloacae YJ-1. In batch culture, The optimum cultivation temperature and pH of strain YJ-1 was 35℃ and 7.5, respectively. All of the added glucose was consumed completely during fermentation even though pH was not controlled. Amount of hydrogen produced on each condition of 2% glucose, 4% sucrose and 5% fructose was 950, 1000 and 948 mL/L, respectively and resulted in increasing hydrogen production approximately 2.5-times more than controlled condition. The maximum hydrogen production was obtained when 50 mM phosphate was added. In repeated-batch culture, hydrogen gas of 1920 mL/L was totally produced for 48. The maximum hydrogen was produced on the condition of 0.5% yeast extract, but the production amount was not changed on the condition of over 0.5%. Most of the organic acids produced during the fermentation were formic and acetic acid, and propionic acid was moiety also generated.

키워드

참고문헌

  1. Solar Energy v.30 no.1 D. pimental https://doi.org/10.1016/0038-092X(83)90002-6
  2. Appl. Microbiol. Biotechnol. v.23 Photoproduction of molecular hydrogen from wastewater of a sugar refinary by photosynthetic bacteria Bollinger, R.;Zurrer;R. Bachofen https://doi.org/10.1007/BF00938968
  3. J. Fermen. Technol. v.55 Photosynthetic bacteria in waste treatment: Pure culture studies Sawada, H.;P. L. Rogers
  4. Advandces in Microbial Physiology v.26 Hydrogenase, nitrogenase and hydrogen metabolism in the photosynthetic bacteria Vignais, P. M.;A. Colbeau;J. C. Wilson;Y. Jouanneau https://doi.org/10.1016/S0065-2911(08)60397-5
  5. Int. J. Hydrogen Energy. v.4 Microbial hydrogen production for replenishable resources Zajic, J. E.;A. Margaritis;J. D. Brosseau
  6. Arch. Microbiol. v.64 Photosynthetic growth of new isolated non-sulfur purple bacteria at the expense of molecular hydrogen Klemme, J. H.
  7. System. Appl. Microbiol. v.8 Hydrogen gas in a minimal medium with Clostridium bytyricum Heyndrickx, M.;A. Vansteenbeek;J. DeLeg https://doi.org/10.1016/S0723-2020(86)80087-X
  8. Agri. Biol. Chem. v.51 no.9 Production of molecular hydrogen by a continuous culture under laboratory condition Kim, J. S.;K. Ito;K. Izaki;H. Takahashi https://doi.org/10.1271/bbb1961.51.2591
  9. Science v.184 Hydrogen evolution by mitrogen-fixing Anabaena cylindrica cultures Benemann, J. R.;N. M. Weare https://doi.org/10.1126/science.184.4133.174
  10. Reserch Report, Ministry of Trade, Industry, and Energy, 941C401-364FP1 Production of bio-hydrogen from waste materials Bae, M.
  11. Int. J. Hydrogen Energy v.19 no.10 Continuous hydrogen production from molasses by the bacterium Enterobacter aerogenes Tanisho, S.;Y. Ishiwata https://doi.org/10.1016/0360-3199(94)90197-X
  12. Hakkokogaku v.67 Fermentative hydrogen evolution from various substrates by Enterobacter aerogenes Tanisho, S.;Y. Suzuki;N. Wakao
  13. System. Appl. Microbiol. v.9 Effect of various external factors on the fermentative production of hydrogen gas from glucose by Clostridium butyricum strains in batch culture Heyndrix, M.;P. De Vos;B. Thibau;P. Stevens;JIDe Ley https://doi.org/10.1016/S0723-2020(87)80072-3
  14. Appl. Microbiol. Biotechnol. v.23 Glucose fermentation by Clostridium butyricum grown under a self generated gas atmosphere in chemostat culture Van Andel, J, G.;G. R. Zouterg;P. M. Crabbendam;A, M, Breure https://doi.org/10.1007/BF02660113
  15. Biochemie v.62 Biochemical energy conversion using immobilized whole cells of Clostridium butyricum Suzuki, S.;I. Karube;T. Matsunaga;S. Kuriyama;N. Suquki;N. Shirogami;T. Takamura
  16. J. Ferm. Bioeng. v.79 no.4 Biological production of hydrogen from cellulose by natural anaerobic microflora Lieno, Y.;T. Kawai;S. Sato;S. Otsuka;M. Morimoto https://doi.org/10.1016/0922-338X(95)94005-C
  17. J. Ferm. Bioeng. v.79 no.4 Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture Ueno, Y.;S. Otsuka;M. Morimoto https://doi.org/10.1016/0922-338X(95)94005-C
  18. Microbiol. Rev. v.50 Acetone-butanol fermentation revisited Jones, D. T.;D. R. Woods
  19. Appl. Microbiol. Biotechnol. v.25 Culture conditions for growth and solvent biosynthesis by a modified Clostridium acetobutyricum Yerushalmi, L.;B. Volesky