Isolation and Characterization of Hydrogen Producing Bacterium

수소생산균 Enterobacter cloacae YJ -1의 분리 및 특성

  • 이기석 (전남대학교 공과대학 환경공학과) ;
  • 강창민 (초당대학교 공과대학 환경공학과) ;
  • 정선용 (전남대학교 공과대학 환경공학과)
  • Published : 2003.04.01

Abstract

The hydrogen-producing bacterium was isolated from fresh water and identified as Enterobacter cloacae. The isolated was named Enterobacter cloacae YJ-1. In batch culture, The optimum cultivation temperature and pH of strain YJ-1 was 35℃ and 7.5, respectively. All of the added glucose was consumed completely during fermentation even though pH was not controlled. Amount of hydrogen produced on each condition of 2% glucose, 4% sucrose and 5% fructose was 950, 1000 and 948 mL/L, respectively and resulted in increasing hydrogen production approximately 2.5-times more than controlled condition. The maximum hydrogen production was obtained when 50 mM phosphate was added. In repeated-batch culture, hydrogen gas of 1920 mL/L was totally produced for 48. The maximum hydrogen was produced on the condition of 0.5% yeast extract, but the production amount was not changed on the condition of over 0.5%. Most of the organic acids produced during the fermentation were formic and acetic acid, and propionic acid was moiety also generated.

수소를 생산하기 위하여 자연계로부터 분리된 균주는 Enterebacter cloacae로 동정되었으며 이 균주를 YJ-1으로 명명하였다. 수소발생량을 기준하여 이 균주의 최적 성장조건을 살펴본 바, 회분식 배양에서 $35^{\circ}C$, pH 7.5로 나타났다. 따라서 탄소원의 농도를 변화시킨 결과, 최대의 수소생산은 2% glucose, 4% sucrose, 5% fructose에서 각각 950 mL/L, 1000 mL/L, 948 mL/L을 얻어졌으며, 초기에 비해 2.5배 높은 생산량을 얻을 수 있었다. 유기산 축척에 따른 pH 저하를 막기 위해 완충제인 phosphate를 첨가한 결과, 50 mM에서 가장 높은 수소를 생산할 수 있었다. 반회분식 배양으로 50%의 새로운 배지를 8 hr 간격으로 치환하여 48시간동안 수행한 결과 1920 mL/L의 수소를 생산할 수 있었다. Yeast extract는 균체성장에 중요한 성분으로서 0.5%에서 최대의 수소를 생산할 수 있었다. 발효 중 생성된 유기산은 대부분 formic acid, acetic acid이고 적은 양의 propionic acid가 생성되었다.

Keywords

References

  1. Solar Energy v.30 no.1 D. pimental https://doi.org/10.1016/0038-092X(83)90002-6
  2. Appl. Microbiol. Biotechnol. v.23 Photoproduction of molecular hydrogen from wastewater of a sugar refinary by photosynthetic bacteria Bollinger, R.;Zurrer;R. Bachofen https://doi.org/10.1007/BF00938968
  3. J. Fermen. Technol. v.55 Photosynthetic bacteria in waste treatment: Pure culture studies Sawada, H.;P. L. Rogers
  4. Advandces in Microbial Physiology v.26 Hydrogenase, nitrogenase and hydrogen metabolism in the photosynthetic bacteria Vignais, P. M.;A. Colbeau;J. C. Wilson;Y. Jouanneau https://doi.org/10.1016/S0065-2911(08)60397-5
  5. Int. J. Hydrogen Energy. v.4 Microbial hydrogen production for replenishable resources Zajic, J. E.;A. Margaritis;J. D. Brosseau
  6. Arch. Microbiol. v.64 Photosynthetic growth of new isolated non-sulfur purple bacteria at the expense of molecular hydrogen Klemme, J. H.
  7. System. Appl. Microbiol. v.8 Hydrogen gas in a minimal medium with Clostridium bytyricum Heyndrickx, M.;A. Vansteenbeek;J. DeLeg https://doi.org/10.1016/S0723-2020(86)80087-X
  8. Agri. Biol. Chem. v.51 no.9 Production of molecular hydrogen by a continuous culture under laboratory condition Kim, J. S.;K. Ito;K. Izaki;H. Takahashi https://doi.org/10.1271/bbb1961.51.2591
  9. Science v.184 Hydrogen evolution by mitrogen-fixing Anabaena cylindrica cultures Benemann, J. R.;N. M. Weare https://doi.org/10.1126/science.184.4133.174
  10. Reserch Report, Ministry of Trade, Industry, and Energy, 941C401-364FP1 Production of bio-hydrogen from waste materials Bae, M.
  11. Int. J. Hydrogen Energy v.19 no.10 Continuous hydrogen production from molasses by the bacterium Enterobacter aerogenes Tanisho, S.;Y. Ishiwata https://doi.org/10.1016/0360-3199(94)90197-X
  12. Hakkokogaku v.67 Fermentative hydrogen evolution from various substrates by Enterobacter aerogenes Tanisho, S.;Y. Suzuki;N. Wakao
  13. System. Appl. Microbiol. v.9 Effect of various external factors on the fermentative production of hydrogen gas from glucose by Clostridium butyricum strains in batch culture Heyndrix, M.;P. De Vos;B. Thibau;P. Stevens;JIDe Ley https://doi.org/10.1016/S0723-2020(87)80072-3
  14. Appl. Microbiol. Biotechnol. v.23 Glucose fermentation by Clostridium butyricum grown under a self generated gas atmosphere in chemostat culture Van Andel, J, G.;G. R. Zouterg;P. M. Crabbendam;A, M, Breure https://doi.org/10.1007/BF02660113
  15. Biochemie v.62 Biochemical energy conversion using immobilized whole cells of Clostridium butyricum Suzuki, S.;I. Karube;T. Matsunaga;S. Kuriyama;N. Suquki;N. Shirogami;T. Takamura
  16. J. Ferm. Bioeng. v.79 no.4 Biological production of hydrogen from cellulose by natural anaerobic microflora Lieno, Y.;T. Kawai;S. Sato;S. Otsuka;M. Morimoto https://doi.org/10.1016/0922-338X(95)94005-C
  17. J. Ferm. Bioeng. v.79 no.4 Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture Ueno, Y.;S. Otsuka;M. Morimoto https://doi.org/10.1016/0922-338X(95)94005-C
  18. Microbiol. Rev. v.50 Acetone-butanol fermentation revisited Jones, D. T.;D. R. Woods
  19. Appl. Microbiol. Biotechnol. v.25 Culture conditions for growth and solvent biosynthesis by a modified Clostridium acetobutyricum Yerushalmi, L.;B. Volesky