Isolation and Characterization of 4-(2,4-Dichlorophenoxy)Butyric Acid-Degrading Bacteria from Agricultural Soils

  • Park, In-Hyun (School of Agricultural Biotechnology, Seoul National University) ;
  • Ka, Jong-Ok (School of Agricultural Biotechnology, Seoul National University)
  • Published : 2003.04.01

Abstract

Eight numerically dominant 4-(2,4-dichlorophenoxy) butyric acid (2,4-DB)-degrading bacteria and three pairs of bacteria showing syntrophic metabolism of 2,4-DB were isolated from soils, and their phylogenetic and phenotypic characteristics were investigated. The isolates were able to utilize 2,4-DB as a sole source of carbon and energy, and their 2.4-DB degradative enzymes were induced by the presence of 2.4-DB. Analysis of 16S rDNA sequences indicated that the isolates were related to members of the genera, Variovorax, Sphingomonas, Bradyrhizobium, and Pseudomonas. The chromosomal DNA patterns of the isolates obtained by polymerase-chain-reaction (PCR) amplification of repetitive extragenic palindromic (REP) sequences were distinct from each other. Four of the isolates had plasmids, but only one strain, DB 1, rad a transmissible 2,4-D degradative plasmid. When analyzed with PCR using primers targeted to the tfdA, B, and C genes, only strains DB2 and DB9a produced DNA bands of the expected sizes with the tfdA and C primers, respectively. All of the isolates were able to degrade 2,4-D as well as 2,4-DB, suggesting that the degradation pathways of these compounds were closely related to each other, but respiratory activities of many isolates adapted to 2,4-DB metabolism were quite low with 2,4-D.

Keywords

References

  1. Adv. Appl. Microbiol. v.7 Biodegradation: Problems of molecular recalcitrance and microbial fallibility Alezander, M. https://doi.org/10.1016/S0065-2164(08)70383-6
  2. Methods of Soil analysis, Soil Science Society of America Most probable number methods for microbial populations Alexander, M.;A. L. Page(ed.)
  3. J. Mol. Biol. v.215 Basic local alignment tool Altschul, S. F.;W. Gish;W. Miller;E. W. Myers;D. J. Lioman
  4. FEMS Microbiol. Lett. v.138 Rapid, direct extraction of DNA from soils for PCR analysis using polyvinylpolyrrolidone spin columns Berthelet, M.;L. G. Whyte;C. W. Greer https://doi.org/10.1111/j.1574-6968.1996.tb08128.x
  5. J. Environ. Qual. v.16 Effects of long-term 2,4-D field applications of soil biochemical processes Biederbeck, V.O.;C. A. Cambell;A. E. Smith https://doi.org/10.2134/jeq1987.00472425001600030013x
  6. Appl. Environ. Microbiol. v.54 Isolation of a methyl parathion-degrading Psedomonas sp. that possesses DNA homologous to the opd gene from a Flavobacterum sp. Chaudhry, G. R.;W. B. Wheeler
  7. Chemosphere v.33 Effect of a dichlorophenol-adapted consortium on the dechlorination of dichlorophenol-adapted consortium on the dechlorination of 2,4,6-trichlorophenol and pentachlorophenol in soil Chang, B. V.;L. N. Yeh;S. Y. Yuan https://doi.org/10.1016/0045-6535(96)00173-7
  8. J. Microbiol. v.36 Isolation and characterization of 2,4-dichlorophenoxyacetic acid-degrading bacteria from paddy soils Chung, M. J,;J. O. Ka
  9. Appl. Environ. Microbiol. v.58 Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria de Bruijn, F. J.
  10. J. Bacteriol. v.161 Transposon mutageneis and cloning analysis of the pathways for degradation of 2,4-dichlorophenoxyacetic acid and 3-chlorobenzoate in Alcaligenes eutrophus JMP134(pjP4) Don, R. H.;A. J. Weightman;H. J. Knackmuss;K. N. Timmis
  11. Proc. R. Sco.(London) v.B150 Plant growth-regulating activity in homologoues series of ω-phenoxyalkane carboxylic acids and the influence of ring substitution on their braskdown by β-oxidation within plant tissues Fawcett, C. H.;R. M. Pascal;M. B. Pybus;H. F. Taylor;R. L. Wain;F. Wightman
  12. Siol Biol Biochem v.5 Laboratory incubation studies of chlorophenoxyacetic acids i chernozemic soils Foster, R. K.;R. B. Mckercher https://doi.org/10.1016/0038-0717(73)90081-3
  13. Nature v.217 Degradation of 'diazinon' by synergistic microbial action Gunner, H. B.;B. M. Zuckerman https://doi.org/10.1038/2171183a0
  14. J. Agric. Fodd Chem. v.12 Conversion of 4-(2,4-DB) to 2,4-D from 2,4-DC in soil Gutenmann, W. H.;D. J. Lisk https://doi.org/10.1021/jf60134a006
  15. Curr. Microbiol. v.23 Simultaneous degradation of the herbicides 2,4-dichlorophenoxyacetic acid and 2-(2-methysl-4-chlorophenoxy) propionic acid by mixed bacterial cultures Hallberg, K. B.;M. P. Kelly;O. H. Tuovinen https://doi.org/10.1007/BF02092251
  16. J. Bacteriol. v.180 Novel division level bacterial diversity in a Yellowstone hot spring Hugenholtz, P.;C. Pitulle, K. L.;Hershberger;N. R. Pace
  17. J. Microbiol. Biotechnol. v.11 Evaluation of bioremediation effectiveness by resolving rate-limiting parameters in diesel-contaminated soil Joo, C. S.;Y. S. Oh;W. J. Chung
  18. J. Bacteriol. v.176 Integration and excision of a 2,4-dichlorophenoxyacetic acid degradative plasmid in Alcaligenes paradoxus and evidence of its natural intergeneric transfer Ka, J. O.;J. M. Teidje
  19. Appl. Environ. Microbiol. v.60 Genetic and phenotypic diversity of 2, 4-dichlorophenoxyacetic acid(2,4-D)-degrading bacteria isolated from w,4-D-treated field solis Ka, J. O.;W. E. Holben;J. M. Tiedje
  20. J. Bacteriol. v.145 Rapid procedure for detection and isolation of large small plasmids Kado, C. I.;S. T. Liu
  21. Appl. Environ. Microbiol. v.63 Pristine environments harbor a new group of oligotrophic 2,4-dichlotophenoxyacetic acid degrading bacteria Kamagata, Y.;R. R. Fulthorpe;K. Tamura;H. Takami;L. J. Forney;J. M. Tiedje
  22. Appl. Environ. Microbiol v.45 Detoxification of 2,4,5-trichlotophenoxycatic acid from contaminated soil by Pseudomonas cepacia Kilbane, J. J.;D. K. Chatterjee;A. M. Chakrabarty
  23. Environ. Sci. Tehcnol. v.16 Microbial removal of hazardous organic compounds Kobayashi, H.;B. E. Rittman
  24. Nucleic Acid Techniques in Bacterial Systematics 16S/23S rRNA sequencing Lane, D. J.;E. Stackebrandt(ed.);M. Goodfellow(ed.)
  25. Appl. Environ. Microbiol. v.49 Degradation of the herbicide mecoprop [2-(2-methyl-4-chlorophenoxy)propionic acid] by a synergistic microbial community Lappin, H. M.;M. P. Greaves;J. H. Slater
  26. J. Microbiol. Biotechnol. v.11 Bioremediation of dieselcontaminated soil by bacterial cells transported by electrokinetics Lee, H. S.;K. Lee
  27. Soil Biol. Biochem. v.1 Phenoxy herbicide degradation in soils: Quantitative studies of 2,4-D and MCPA-degrading microbial populations Loos, M. A.;I. F. Schlosser;W. R. Mapham
  28. J. Biol. Chem. v.193 Protein measurement with the Folin phenol reagent Lowry, O. H.;H. J. Rosebrough;A. L. Farr;R. J. Randall
  29. J. Gen. Microbiol. v.32 The decomposition of 4-(2,4-dichlorophenoxy_butyric acid by Flavobacterium sp. Macrae, I.C.;M.Alexander;A. D. Rovira https://doi.org/10.1099/00221287-32-1-69
  30. Nucleic Acids Res. v.28 The RDP (Ribosomal Database Project) continues Maidak, B. L.;J. R. Cole;T. G. Liburn;C. T. Parker Jr.;P. R. Saxman;J. M. Stredwick;G. M. Garrity;B. Li;G. J. Olsen;S. Pramanik;T. M. Schmide;J. M. Tiedje https://doi.org/10.1093/nar/28.1.173
  31. Appl. Envrion. Microbiol. v.31 Pathways of microbial metabolism of parathion Munnecke, D. M.;D. P. H. Hsi
  32. J. Environ. Qual. v.20 Effects of long-term 2,4-D and MCPA, mecoprop, and 2,4,5-T Smith, A. E.;A. J. Aubin https://doi.org/10.2134/jeq1991.00472425002000020016x
  33. Weed Res. v.21 Relative persistence of MCPA, MCPB and mecoprop in Saskatchewan soils and the identification of MCPA in MCPB-treated soils Smith, A. E.;B. J. Hayden https://doi.org/10.1111/j.1365-3180.1981.tb00114.x
  34. Weed Res. v.15 The effect of repeated application of 2,4-D and MCPA on their breakdown in soil Torstensson, N.T. L.;J. Stark;B. Goransson https://doi.org/10.1111/j.1365-3180.1975.tb01116.x
  35. FEMS Microbiol. Eco. v.20 The metabolic pathway of 2,4-dichlorophenoxyacetic acid degradation involves different families of tfdA and tfdB genes according to PCR-RFLP analysis Vallaeys, T.;R. R. Fulthorpe;A. M. Wright;G. Soulas https://doi.org/10.1111/j.1574-6941.1996.tb00315.x
  36. Methos Mol. Cell Biol. v.5 Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction Versalovic, J.;M. Schneider;F. J. de Bruijn;J. R. Lupski
  37. J. Agric. Food. Chem. v.3 Herbicidal selectivity through specific action of plants on compounds applied Wain, R. L. https://doi.org/10.1021/jf60048a003
  38. Nature(London) v.179 Formation of β-hydroxy-acid as an intermediate in the microbiological conversion of monochlorophenoxybutyric acid to the corresponding substituted acetic acids Webley, D. M.;R. B. Duff;V. C. Farmer https://doi.org/10.1038/1791130a0
  39. Methods Microbiol. v.21 Conjugation Willetts, N. S. https://doi.org/10.1016/S0580-9517(08)70070-9
  40. J. Bacteriol. v.177 Purification and characterizatio of 6-chlorohydroxyquinol 1, 2-dioxygenase from Streptomyces rochei 303 : comparison with an analogous enzyme from Azotobacter sp. strain GP1 Zaborina, O.;M.Latus;J. Eberspacher;L. A. Golovleva;F. Lingens