Analysis of Bacterial Community Structure in Bulk Soil, Rhizosphere Soil, and Root Samples of Hot Pepper Plants Using FAME and 16S rDNA Clone Libraries

  • Kim, Jong-Shik (National Institute of Agricultural Biotechnology) ;
  • Kwon, Soon-Wo (National Institute of Agricultural Biotechnology) ;
  • Jordan, Fiona (Department of Environmental Sciences, University of California) ;
  • Ryu, Jin-Chang (National Institute of Agricultural Biotechnology)
  • Published : 2003.04.01

Abstract

A culture-independent and -dependent survey of the bacterial community structure in the rhizosphere and soil samples from hot pepper plants was conducted using 16S rDNA clone library and FAME analyses. Out of the 78 clones sequenced, 56% belonged to Proteobacteria, 4% to high G+C Gram- positive group, 3% to Cytophyga-Flexibacter-Bacreroides, and 32% could not be grouped with any known taxonomic division. Among the 127 FAME isolates identified, 66% belonged to low G+C Gram-positive bacteria (Baciilus spp.) and 26% to high G+C Gram-positive bacteria. In a cluster analysis, the results for both methods were found to be strikingly dissimilar. The current study is the first comparative study of FAME and 165 rDNA clonal analyses performed on the same set of soil, rhizosphere soil, and root samples.

Keywords

References

  1. J. Mol. Biol. v.215 Basic local alignment search tool Altschul, S. F.;W. Gish;W. Iller;E. W. Myersand;D.?. Lipam
  2. Microbiol. Rev. v.59 Phylogenetic identification and in situ detection of individual microbial cells without cultivation Amann, R. I.;W. Ludwig;K. H. Schleifer
  3. Appl. Environ. Microbiol. v.63 Molecular microbial diversity in soils from eastern Amazonia: Evidence for unusual microorganisms and microbial population shifts associated with deforestation Borneman, J.;E. W. Triplett
  4. Appl. Environ. Microbiol. v.69 In situ exposure to low herbicide concentrations affects microbial population composition and catrations affects microbial population compoition and catabolic gene frequency in an aerobic shallowaquifer de Lipthay, J. R.;N. Tuxen;K.Johnsen;L. H. Hansen;F. J. Albrechtsen;P. L. Bjerg;J. Amand https://doi.org/10.1128/AEM.69.1.461-467.2003
  5. Appl. Environ. Microbiol. v.67 Analysis of bacterial communities in the rhizosphere of chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA as well as DNA fragments coding for 16S rRNA Duineveld, B. M.;G. A. Kowalchuk;A. Keijqer;J. D. van Elsas;J. A. van Veen https://doi.org/10.1128/AEM.67.1.172-178.2001
  6. Appl. Environ. Microbiol. v.65 Levels of bacterial community diversity diversity in four arid soils compared by cultivation and 16S rRNA gene cloning Durbar, J.;S. Takala;S. M. Barns;J. A. Davis;C. R. Kuske
  7. Appl. Environ. Microbiol. v.64 Phylogeny of the main bacterial 16S rRNA sequences in Drentse A grassland soils (The Netherlands) Felske, A.;A. Wolterink;R. van Lis;A. D. L. Akkermans
  8. Biochemical and genetic Mechanisms Used by Plant Crowth Promoting Bacteria Olick, B. R.;C. L. Patten;G. Holguin;D. M. Penerose
  9. J. Bacteriol. v.180 Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity Fugenholtz, P.;B. M. Goebel;N. R. Pace
  10. Nonculturable Microorganisms in the Environment Size matter: dwarf cells in soil and subsurface terrestrial environments Kieft, T. L.;Colwell, R. R.(ed.);D.J. Grimes(ed.)
  11. J. Microbiol. Biotechnol. v.12 FAME analysis to monitor impact of organic matter on soil bacterial populations Kim, J. S.;J. B. Joo;H. Y. Weon;S. C. Kang;S. K. Lee;C. S. Yahng
  12. J. Bicrobiol. Biotechnol. v.11 Comparison of the chemotaxis potential of bacteria isolated from spinach roots and nonrhizosphere soil Kim, J.S.;M.Sakai;S. K. Lee;C. S. Yahng;T. Matsuguchi
  13. MEGA2: Molecular Evolutionary Genetics Analysis software Kumar, S.;K. Tamura;I. B. Jakobsen;M. Nei
  14. Nucleic Acid Techniques in Bacterial Systematics 16S/23S rRNA sequencing Lane, D. J.;Stackebrandt, E.(ed.);M. Goodfellow(ed.)
  15. Modern Soil microbiology Microbial diversity in soil:The need for a combined approach using molecular and cultivation techniques Liesack, W.;H. J. Peter;F. A. Rainey;N. L. Ward-Rainey;E. Stackebrandt;van Elsas, J. D.(ed.);J. T. Trevors(ed.);E. . H. Wellingron(ed.)
  16. J. Microbiol. Biotechnol. v.12 A plant growthpromoting Pseudomonas fluorescens GL20-mechanism for disease suppression, outer membrane receptors for ferric siderophore, and genetic improvemnet for increased biocontrol efficacy Lin, H.S.;J. M. Lee;S. D. Kim
  17. Microb. Ecol. v.34 Tmporal changes in the bacterial communities of soil, rhizosphere, and endorthza associated with field-grpwn cucumger (Cucumis sativus L.) Mahaffee, W. F.;J. W. Kloepper https://doi.org/10.1007/s002489900050
  18. Appl. Environ. Microbiol. v.66 Bacterial origin and community composition in the barley phytosphere as a function of habitat and presowing conditions Normander, B.;J. I. Prosser https://doi.org/10.1128/AEM.66.10.4372-4377.2000
  19. Appl. Environ. Microbiol. v.66 Culture-dependent and culture-independent characteruzation of microbial assemblages associated with high-temperature pertoleum reservoirs Orphan, V. J.;L. T. Taylor;D. Hafenbradl;E. F. Delong https://doi.org/10.1128/AEM.66.2.700-711.2000
  20. Mol. Biol. Evol. v.4 The neighbor-joining method: a new method for reconstructing phylogenetic tree Saitou, N.;M. Nei
  21. Molecular Cloning: A Laboratory Manual (2nd ed.) Smabrook, J.;E. F. Fritsch;T. Maniatis
  22. Appl. Environ. Microbiol. v.67 Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: Plant-dependent enrichment and seasonal shifts revealed Smalla, K.;G. Wieland;A, Buchner;A. Zock;J. Parzy;S. Kaiser;N. Roskot; H. Heuer;G. Berg https://doi.org/10.1128/AEM.67.10.4742-4751.2001
  23. Appl. Environ. Microbiol. v.67 Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a whear field as determined by cultivation and molecular methods Smit, E.;P. Leeflang;S. Gommans;J. van den Broek;S. van Mil;K. Wernars https://doi.org/10.1128/AEM.67.5.2284-2291.2001
  24. Methods of Soil Analysis Sparks, D. L.
  25. Appl. Envrion. Microbiol. v.64 Kinetic bias in estimates of coastal picoplankton community structure obtained by measurements of small-subunit rRNA gene PCR amplicon length heterogeneity Suzuki, M.;M. S. Rappe;S. J. Giovannoni
  26. Nucleic Acids. Res. v.22 CLUSTAL W: Improving the sensitivity of protressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice Thompson, J. D.;D. G. Higginas;T. J. Gibson https://doi.org/10.1093/nar/22.22.4673
  27. J. Ind. Microbiol. v.17 Total bacterial dibersity in soil and sediment communities- a review Torsvik, V.;R. Sorhieim;J. Goksoyr https://doi.org/10.1007/BF01574690
  28. Appl. Environ. Microbiol. v.57 Rapid method for direct extraction of DNA from soil and sediments Tsai, Y. L.;B. H. Olsen
  29. Appl. Environ. Microbiol. v.68 Analysis of bacterial community composition by oligonucleotide fingerprinting of rRNA genes Valinsky, L.;G. D. Vedova;A. J. Scupham;S. Alvey;A. Figureroa;B. Yin;R. J. Hartin;M. Chrobak;D. E. Crowley;T. Jiang;J. Borneman https://doi.org/10.1128/AEM.68.7.3243-3250.2002
  30. Appl. Environ. Microbiol. v.67 Variation of microbial communities in soil, rhizosphere, and root in respinse to crop species, soil type, and crop development Wieland, G.;R. Neumann;H. Backhaus https://doi.org/10.1128/AEM.67.12.5849-5854.2001
  31. Nonculturable Microorganisms in the Environment Viable but nonculturable cells in plants-associated bacterial populations Wilson, M.;S. E. Lindow;Colwell, R. R.(ed.);D. J. Grimes(ed.)
  32. Methods of Soil Analysis Recovery and enumeration of viable bacteria Zuberer, D. A.;Weaver, R. W.(ed.)