Reduction of Ammonia Accumulation and Improvement of Cell Viability by Expression of Urea Cycle Enzymes in Chinese Hamster Ovary Cells

  • Published : 2003.04.01

Abstract

Previously, we developed a CHO cell line (CHO-OTC1-Al9) that expresses the first two enzymes in the urea cycle and exhibits a higher ammonia-removing ability and faster growth rate than a vector-controlled CHO cell line (CHO-neo-5). The current study was undertaken to develop a cell line with an ammonia-removing ability higher than the cell line developed previously. To accomplish this, CHO cell lines expressing the first three, first four, or all five enzymes of the urea cycle were constructed using a stable transfection method. Finally, the CHO-AS-16, CHO-AL-19, and CHO-Arg-11 cell lines expressing the first three, first four, and all five enzymes of the urea cycle, respectively, were selected and found to exhibit higher ammonia-removing ability than the CHO-OTC1-Al9 cell line. Among the three selected cell lines, CHO-AL-19 showed the highest ammonia-removing ability and highest cell viability at a higher cell density, with 40% and 15% lower ammonia concentration in the, culture media than that of CHO-neo-5 and CHO-OTC1-A19 cell lines, respectively. CHO-AL-19 also showed 44% and 10% higher cell viability than the CHO-neo-5 and CHO-OTC-Al9 cell lines, at a higher cell density, respectively. The ammonia concentrations in the culture media were expressed as the ammonia concentration/cell, and the CHO-AL-19 cells revealed 45-60% and 20% lower ammonia concentration/cell than the CHO-neo-5 and CHO-OTC1-Al9 cells, respectively.

Keywords

References

  1. Biotechnol Bioeng. v.47 The effect of ammonia on the O-linked glycosylationof granulocyte colony-stimulating factor produced by Chinese Hamster ovary cell Andersen, D. C.;C. F. Goochee https://doi.org/10.1002/bit.260470112
  2. Res. Immunol. v.145 Effect of ammonia on endocytosis, cytokine production and lysosomal enzyme activity of a microglial cell line Atanassov, C. L.;C. D. Muller;S. Sarhan;B. Kodgen;G. Rebel;N. Seiler https://doi.org/10.1016/S0923-2494(94)80016-2
  3. Biotechnol. Bioeng. v.43 Ammonium affects the glycosylation patterns of recombinant mouse placement lactogen- I by Chinese hamster ovary cells in a pH-dependent manner Eorys, M.C.;D. I. H. Linzer;E. T. Papoutsakis https://doi.org/10.1002/bit.260430611
  4. J Cell Sci. v.61 High yields from microcarrier cultures by medium perfusion Eutler, M.;T. Imamura;J. Thomas;W. G. Thilly
  5. J. Biotechnol. v.1 The effects of glutamine utilization and ammonia production on the growth of BHK cells in microcattier culture Eutler, M.;R. E. Spier https://doi.org/10.1016/0168-1656(84)90004-X
  6. J. Biotechnol. v.39 Methods for reducing the amrnonia in hybridoma cell cultures Capiaumont, J.;C. Legrand;D. Carbonell;B. Dousset;F.Eelleville;P. Nabet https://doi.org/10.1016/0168-1656(94)00142-Y
  7. Proceedings of the Eleventh ESACT Meeting Development of strategies for the removal of ammonia from animal cell cultures Carponell, D.;B. Besnainou;J. Capiaumont;C. Legrand;P. Lessart;P. Nabet
  8. J. Microbiol. Biotechnol. v.11 Effect of sodium butyrate on glycosylation of recombinant erythropoietin Chung, B. S.;Y. T. Jeong;K. H. Chang;J. S. Kim;J. H. Kim
  9. Enz. Microbial Technol. v.27 Effects of ammonia and lactate on growth, metabolism, and productrivity of BHK cells Cruz, H. J.;C. M. Freitas;P. M. Alves;J. L. Moreira;M. J. T. Carrondo https://doi.org/10.1016/S0141-0229(00)00151-4
  10. Chemical Congress of North Am. v.3 no.2 The control of ammonia toxicity in large scale culture of C 127 cells and hybridomas Darling, T.;J. Mitschelen;C. Kaufman;S. Dilworth;E. Sanders;T. Irish;M. Dombalagian;T. O. Sun
  11. Hepatology v.24 Development of the ornithine cycle in rat liver: Zonation of a metabolic parhway Digngemase, M. A.;W. J. De Jonge;P. A. De Boer;M. Mori;W.H. Lamers https://doi.org/10.1002/hep.510240219
  12. Current Protocols in Molecular Biology Frederick, M. A.;B. Roger;E. K. Robert;D. M. David;J. G. Seidmon;A. S. John;S. Kevin
  13. Biotechnol. Bioeng. v.28 Reduction of waste product excretion via nutrient control: Possible strategies for maximizing product and cell yields on serum in cultures of mammalian cells Glacken, M. W.;R. J. Fleischaker;A. J. Sinskey https://doi.org/10.1002/bit.260280912
  14. Biotechnol. Prog. v.10 Influence of ammonium on growth, metabolism, and productivity of a continuous suspension Chinese hamster ovary cell culture Hansen, H. A.;C. Emborg https://doi.org/10.1021/bp00025a014
  15. J. Cell Sci. v.96 Adaptation to nonammoniagenic medium and selective substrate feeding lead to enhanced yields in animal cell culture Hassel, T.;M. Butler
  16. Biotechnol. Bioeng. v.44 Transient responses of hybridoma cells in continuous culture to step changes in amino acids and vitamin concentrations Hiller, G. W.;D. S. Clark;H. W. Blanch https://doi.org/10.1002/bit.260440308
  17. Proceedings of the International Symposium on Growth and Differentiation of Cells in Defined Environment Effects on cell proliferation of metabolites produced by cultured cells and their removal from culture in defined media Iio, M.;A. Moriyama;H. Murakami;Murakami(et al.)
  18. Kor. J. Biotechnol. Bioeng. v.11 Ammonium ion effects and its in situ removal by using immobilized adsorbent in hybridoma cell culture Jeong, Y. H.;H. I. Lee;G. T. Chun;I. H. Kim;S. S. Wang
  19. J. Biol. Chem. v.262 Complete nucleotide sequence of cDNA and deduced amino acid sequence of rat liver arginase Kawamoto, S.;Y. Amaya;K. Murakami;F. Tokunage
  20. Immunopharmacology v.8 Ammonia toxicity for mammalian and avian lymphosytes from blood Klucinski, W.;S. Tarowski https://doi.org/10.1016/0162-3109(84)90056-0
  21. J. Biotechnol. v.15 Growth behavior of Chinese hamster ovary cells in a compact loop bioreactor, 2. Effects of medium components and waster products Kurano, N.;C. Leist;F. Messi;S. Kurano;A. Fiechter https://doi.org/10.1016/0168-1656(90)90055-G
  22. Mol. Cell. Biol. v.6 Molecular clonig of cDNA for rat argininosuccinate lyase and its expression in rat hepatoma cell lines Lambert, M. A.;L. R. Simard;P. N. Ray;R. R. Mcines
  23. Biotechnol. Bioeng. v.44 Catabolic control of hybridoma cells by glucose and glutamine linited fed batch cultures Ljunggren, J.;L. Haggstrom https://doi.org/10.1002/bit.260440706
  24. Biotechnol. Bioeng. v.35 Effect of ammonium ion and extracellular pH on hybridoma cell metabolism and antibody production Mc Queen, A.;J. Bailey https://doi.org/10.1002/bit.260351102
  25. Histochem. J. v.22 Expression patterns of mRNAs for ammonia-metablizing enzymes in the developing rat: The ontogenesis of hepatocyte heterogeneity Mooraman, A. F.;P.A. De Boer;A. T. Das;W. T. Labruyere;R. Charles;W. H. Lamers https://doi.org/10.1007/BF01007229
  26. J. Biotechnol. v.34 HBs-Mab production in perfusion culture with selective ammonia removal system Nayve, F. R. P. Jr;T. Misato;M.Matsumura;H. Kataoka https://doi.org/10.1016/0168-1656(94)90057-4
  27. Biotechnol. Bioeng. v.39 Effects of ammonia and lactate on hybridoma growth, metabolism, and antibody production Ozturk, S. S.;M. R. Riley;B. O. Palsson https://doi.org/10.1002/bit.260390408
  28. J. Biotechnol. v.8 Expression of carbamoyl phosphate synthetase I and ornithine transcarbamoylase genes in Chinese hamster ovary dhfr-cells decreases accumulation of ammonium ion in culture media Park, H. S.;I. H. Kim;I. Y. Kim;K.H. Kim;H. J. Kim
  29. Kor. J. Microbiol. Biotechnol. v.30 Characteristics of ammonia removal in biofilters inoculated with earthworm cast Ryu, H. W.;H. D. Han;K. S. Cho
  30. Molecular Colning: A Laboratory Manual (Second ed.) Sambrook, J.;E. F. Fritisch;T. Maniatis
  31. Sep. Sci. Technol. v.29 Ammonia removal from mammalian cell culture medium by ion-exchange membranes Sikdar, S. K.;S. B. Sawant
  32. Biotehcnol. Bioeng. v.44 Cell death in bioreactors: A role for apoptosis Singh, R. P.;M. Al Rubeai;C. D. Gregory;A. N. Emery https://doi.org/10.1002/bit.260440608
  33. Proceedings of the Eleventh ESACT Meeting Integrated detoxification: Reduction of ammonium concentration by dialysis with cation exchange membranes Thommes, J.;U. Garske, M.;Biselli;C. Wandrey
  34. Nature v.321 Chloroquine and ammonium chloride prevents teminal glycosylation of immunoglobulins in plasma cells without affecting secretion Thorens, B.;P. Vassalli https://doi.org/10.1038/321618a0
  35. J. Cell. Physiol. v.80 Ammonia effects in culture of normal and transformed 3T3 cells Visek, W;G. Koledny;P. Gross
  36. Biochim. Biophys. Acta v.1200 Lobular patterns of expression and enzyme activities of glutamine synthase, carbamoylphosphate development of the porcine liver Wagenaar, G. T.;W. J. Geerts;R. A. Chamuleau;N. E. Dertz;W. H. Lamers https://doi.org/10.1016/0304-4165(94)90166-X
  37. Biotechnol. Lett. v.20 Ammonium ion transport by the Na+K+2Cl cotransporter induces apoptosis in hyvridoma cells Westlund, A.;L. Haggstrom https://doi.org/10.1023/A:1005347617797
  38. Biotechnol. Bioeng. v.68 Effects of ammonia on CHO cell growth, erythropoietin production, and glycosylation Yang, M.;M. Butler https://doi.org/10.1002/(SICI)1097-0290(20000520)68:4<370::AID-BIT2>3.0.CO;2-K
  39. Biotechnol. Prog. v.14 Role of nucleotide sugar pools in the inhibition of NCAM polysialylation by ammonia Zanghi, J.A.;T. P. Mendoza;A. E. Schmelzer;R. H. Knop;W. M. Miller https://doi.org/10.1021/bp9800945