In Vitro Immunopotentiating Activity of Cellular Components of Lactococcus lactis ssp. lactis

  • Kim, Ji Yeon (Department of Food Science and Technology, School of Agricultural Biotechnology, Seoul National University) ;
  • Lee, Seong-Kyu (Department of Applied Biological Chemistry, The University of Tokyo) ;
  • Ciiimura, Satoshi-Ha (Department of Applied Biological Chemistry, The University of Tokyo) ;
  • Kaminogawa, Shuichi (Department of Applied Biological Chemistry, The University of Tokyo) ;
  • Lee, Hyong-Joo (Department of Food Science and Technology, School of Agricultural Biotechnology, Seoul National University)
  • Published : 2003.04.01

Abstract

To determine the effect of immunopotentiating activity of cellular components of Lactococcus lactis ssp. lactis, the immune function was analyzed in vitro using mice cells. When stimulated with mitogens, productions of $IFN-{\gamma}$, IL-12, $TNF-{\alpha}$, and IL-6 were enhanced in spleen cells treated with cellular components, with IL-4 production being the highest in spleen cells treated with cytoplasm fraction. Without mitogen stimulation, the productions of $IFN-{\gamma}$ and IL-12 were the highest in spleen cells treated with heat-killed whole cell. $TNF-{\alpha}$ and IL-6 productions were also high in spleen cells treated with all cellular components. Only heat-killed whole cell showed significant enhancement in natural killer cell activity. In peritoneal exudates cells, $TNF-{\alpha}$ production was enhanced significantly by all cellular components of Lactococcus lactis ssp. lactis These results indicate that the cellular components of Lactococcus lactis ssp. lactis are capable of stimulating immune cells to produce cytokines, and that both their cell walls and cytoplasm fraction contribute to these capacities.

Keywords

References

  1. Immunol. Rev. v.111 Regulation of T-cell activation: Differences among T-cell subsets Gajewski, T. F.;S. R. Schell;G. Nau;F. W. Fitch https://doi.org/10.1111/j.1600-065X.1989.tb00543.x
  2. Br. J. Nutr. v.83 Enhancement of natural and aquired immunity by Lactobavillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019) Gill, H. S.;K. J. Rutherfurd;J. Prasad;P. K. Gopal https://doi.org/10.1017/S0007114500000210
  3. FEMS Microbiol Rev. v.7 Health and nutritional benefits from lactic acid bacteria Gilliland, S. E. https://doi.org/10.1111/j.1574-6941.1990.tb01683.x
  4. Immunol. Rev. v.51 The role of T cell growth stimulating factors in T cell triggering Gronvik, K. O.;J. Andersson https://doi.org/10.1111/j.1600-065X.1980.tb00316.x
  5. J. Natl. Cancer Inst. v.65 Role of natural killer cells in the destruction of circulating tumor emboli Hanna, N.;I. J. Fidler
  6. Int. J. Cancer v.16 Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors Herberman, R. B.;M. E. Nunn;H. T. Holden;D. H. Lavrin https://doi.org/10.1002/ijc.2910160205
  7. Biosci. Biotechnol. Biochem. v.61 Characterization of a water-soluble polysaccharide fraction with immunopotentiating activity from Bifidbacterium adolescentis M101-4 Hosono, A.;J. Lee;A. Ametani;M. Natsume;M. Hirayama;T. Adachi;S. Kaminogawa https://doi.org/10.1271/bbb.61.312
  8. Jpn. J. Cancer Res. v.72 Antitumor activity of Lactobavillus casei in mice Kato, I. ;S. Kobayash;T. Yokokura;M. Mutrai
  9. Int. J. Cancer v.29 Selective depletion of NK cell activity in vivo and its effect on the growth of NK-sensitive and NK-resistant tumor variants Kawase, I.;C. L. Urdal;C. G. Brooks;C. S. Henney https://doi.org/10.1002/ijc.2910290513
  10. J. Immunol. v.126 Natural cytotoxic cells against solid tumor in mice Lattime, E. C.;G. A. Pecoraro;O. Stutman
  11. J. Micrbiol. Biotechnol. v.12 Cytoskeleton reorganization and cytokine production of macrophages by bifidobacterial cells and cell-free extracts Lee, M. J.;Z. Zang;E. Y. Choi;H. K. Shin;G. E. Ji
  12. Immunopharmacol. Immunotoxicol. v.17 Intravenous immunoglobulins suppress the recurrences of genital herpes simplex virus: A clinical and immunological study Masci, S.;C. De Simone;G. Facularo;M. Gravante;M. Ciancarelli;M.Andreassi;P. Amerio;G. Santini https://doi.org/10.3109/08923979509052718
  13. J. Food Prot. v.60 Effects of Lactobacillus ssp. on cytokine production by RAW 264.7 mactophages and EL-4 thymoma cell lines Marin, M. L.;M.V. Tejada-Simon;J. Murtha;Z. Ustunol;J. J. Pestka
  14. Immunol. Lett. v.74 Cytokines in cancer therapy Parmiani, G.;L. Rivoltini;G. Andreola;M. Carrabba https://doi.org/10.1016/S0165-2478(00)00247-9
  15. Infect. Immun. v.53 Effect of perorally admonistered lactobacilli on macrophage activation in mice Perdigon, G.;M. E. Nader de Macias;S. Alvarez;G. Oliver;A.A. Pesce de Ruiz Holgado
  16. J. Darity Sci. v.70 Enhancement of immune response in mice fed with Streptococcus thermophillus and Lactobavillus acidophilus Perdigon, G;M. E. Nader de Macias;S. Alvarez;M. Medici;G. Oliver;A. A. Psece de Ruiz Holgado https://doi.org/10.3168/jds.S0022-0302(87)80095-4
  17. Int. J. Cancer. v.25 In vivo natural reactivity of mice against tumor cells Riccardi, C.;A. Santoni;T. Barlozzari;P. Puccetti;R. B. Herberman https://doi.org/10.1002/ijc.2910250409
  18. Int. J. Cancer v.25 Positive correlation correlation between in vitro NK activity and in vivo resistance towards AKR lymphoma cells Riesenfeld, I.;A. Orn;M. Gidlung;I. Axberg;G. V. Alm;H. Wigzell https://doi.org/10.1002/ijc.2910250315
  19. J. Gen. Microbiol. v.133 Protective and therapeutic efficacy of Lactobacillus casei against experimental murine infections due to Mycobavterium fortuitum complex Saito, H.;H.Tomioka;K. Nagashima
  20. Bifidobacteria microflora v.13 Comparison of the TNF-α levels induced by human-derived Bifidobacterium longum and rat-derived Bifidobavterium animalis in mouse peritoneal cells Sekine, K.;T. Kawashima;Y. Hashimoto
  21. Cell. Immunol. v.44 Enhancement by interferon of natural killer cell activity in mice Senik, A.;I. Gresser;C. Maury;M. Gidlund;A. Orn;H. Wigzell https://doi.org/10.1016/0008-8749(79)90039-X
  22. Biosci. Biotechnol. Biochem. v.57 Immune response of mice to orally administered lactic acid bacteria Takahashi, R.;R. Oka;H. Iwana;T. Kuwata;Y. Yamamoto https://doi.org/10.1271/bbb.57.1557
  23. J. Natl. Cancer Inst. v.65 Role of natural killer cells in tumor growth and metastasis: C57BL/6 normal and beige mice Talmadge, J. E.;K. M. Meyers;D. J. Prieur;J. R. Starkey
  24. J. Food Prot. v.62 Proinflammatory cytokine and nitric oxide induction in murine macrophages by cell wall and cytoplasmic extracts of lactic acid bacteria Tejada-Simon, M. V.;J. J. Pestka
  25. FEMS Immunol. Med. Microbiol. v.27 Salmonella infection of bone marrow-derived macrophages and dendritic cells: Influence on antigen presentation and initiating an immune response Yrlid, U.;M. Svensson;C. Johansson;M.J. Wick https://doi.org/10.1111/j.1574-695X.2000.tb01445.x
  26. J. Dairy Sci. v.74 Enhancement of immune response in Peyer's patch cells cultured with Bifidobacteriumbreve Yasui, H.;M. Ohwaki https://doi.org/10.3168/jds.S0022-0302(91)78272-6