Computational Analysis of PCA-based Face Recognition Algorithms

PCA기반의 얼굴인식 알고리즘들에 대한 연산방법 분석

  • Published : 2003.04.01

Abstract

Principal component analysis (PCA) based algorithms form the basis of numerous algorithms and studies in the face recognition literature. PCA is a statistical technique and its incorporation into a face recognition system requires numerous design decisions. We explicitly take the design decisions by in-troducing a generic modular PCA-algorithm since some of these decision ate not documented in the literature We experiment with different implementations of each module, and evaluate the different im-plementations using the September 1996 FERET evaluation protocol (the do facto standard method for evaluating face recognition algorithms). We experiment with (1) changing the illumination normalization procedure; (2) studying effects on algorithm performance of compressing images using JPEG and wavelet compression algorithms; (3) varying the number of eigenvectors in the representation; and (4) changing the similarity measure in classification process. We perform two experiments. In the first experiment, we report performance results on the standard September 1996 FERET large gallery image sets. The result shows that empirical analysis of preprocessing, feature extraction, and matching performance is extremely important in order to produce optimized performance. In the second experiment, we examine variations in algorithm performance based on 100 randomly generated image sets (galleries) of the same size. The result shows that a reasonable threshold for measuring significant difference in performance for the classifiers is 0.10.

얼굴인식 기술 분야에 있어서 Principal component analysis (PCA)기반 알고리즘은 많은 관련 알고리즘의 기초가 되고 있다. PCA는 매우 통계적인 접근이며 얼굴인식 분야에 응용하기 위해서는 많은 설계 결정요인 (design derision)을 필요로 한다. 본 논문에서는 일반적인 modular PCA알고리즘을 소개하면서 design decision을 얻는다. 얼굴인식 알고리즘 평가에 대한 표준 접근 방법인 September 1996 FERET evaluation protocol을 활용하여 각 모듈에 대한 서로 다른 구현방법을 실험하고 평가한다. 실험조건으로는 (1) 조도의 정규화 과정 을 변화 (2) JPEG과 wavelet compression 알고리즘 사용에 대한 성능효과를 분석 (3) 표현방법에서 eigenvectors의 수를 조절 (4) 분류과정에서 유사도 측정방법을 변경하는 등이다. 본 논문에서는 standard September 1996 FERET의 대용량 gallery image set에 대해 적용해 본 결과에 대해 정리하며, 100개의 무작위로 발생된 image set에 대해서도 알고리즘의 성능 변화를 평가한다.

Keywords