DOI QR코드

DOI QR Code

Evaluation of Raingauge Density and Spatial Distribution: A Case Study for Nam Han River Basin

우량계의 밀도 및 공간분포 검토: 남한강 유역을 중심으로

  • 유철상 (고려대학교 토목환경공학과) ;
  • 김인배 (고려대학교 대학원 환경공학과) ;
  • 류소라 (고려대학교 대학원 환경공학과)
  • Published : 2003.04.01

Abstract

This study has evaluated the raingauge network of Nam-Han River Basin by assuming that the rainfall field is homogeneous in space and its spatial correlation structure is exponential. The results of the study was compared with the standard of WMO. Summarizing the results are as follows: (1) The Nam-Han River Basin is not the mountain area, nor the plain area of the WMO standard. However, the correlation length of the downstream part is longer than that of the upstream part, enough to differentiate the rainfall fields in both areas. (2) It seems that the standard for the evaluation of the raingauge network of Nam-Han River Basin should be decided to represent upper 50% of correlations derived, when the maximum intervals between neighboring gauges are estimated to be 18.2km for the upstream area and 21.1km for the downstream area. Simply evaluating the raingauge density, the Nam-Han River Basin has enough raingauges exceeding the WMO standard for the mountain area in the temperate region. (3) Evaluation of the spatial distribution of raingauges in the Nam-Han River Basin shows that its spatial distribution Is not in a proper level, especially when applying the WMO standard for the mountain area in the temperate region. However, when applying the new standard proposed in this study, only five to six more raingauges are required to be added.

본 연구에서는 강우가 공간적으로 균질하며 아울러 그 공간상관구조도 지수함수를 따른다고 가정하여 남한강 유역의 강우관측망을 평가하였고 아울러 WMO의 기준과 비교하였다. 그 결과를 정리하면 다음과 같다. (1) 남한강유역은 WMO의 기준으로 볼 때 산지도 평지도 아닌 중간적 특성을 나타낸다. 그러나 남한강 상류부에서 관측된강우의 공간상관거리는 남한강 하류부에서 관측된 강우의 공간상관거리에 비해 짧게 나타나며 따라서 상류부와 하류부는 그 강우특성이 구별된다. (2) 남한강 유역의 강우관측망을 평가하는 기준은 대략 상위 50% 정도를 대표하는 상관거리 수준이 되어야 할 것으로 보이며 이 경우 적절한 우량계 사이의 거리는 상류부와 하류부 각각 18.2km와 21.1km로 추정된다. 단순히 강우계의 밀도를 평가할 때 남한강의 경우는 WMO의 산지기준을 초과하는 수준이다. (3) 남한강 유역의 우량계 분포를 검토한 결과, 특히 WMO의 온대지역 산지기준을 적용한 결과 우랑계의 공간분포가 적절하지 않음을 파악할 수 있었다. 그러나 본 연구에서 제안하는 상위 50% 정도를 대표하는 상관거리를 이용하는 경우에는 대략 5 - 6 지점 정도의 우량계 신설이 필요한 것으로 나타났다.

Keywords

References

  1. 유철상, 정광식(2001). 면적평균강우량의 추정 및 추정오차, 한국수자원학회논문집, 제34권 제4호, pp. 317-326
  2. 윤용남 (1998). 공업수문학, 청문각
  3. Chatfield (1989). The analysis of Time Series: An Introduction, Chapman and Hall
  4. Graves, C. E., Valdes, J. B., Shen, S. S. P., and North, G. R. (1993). Evaluation of sampling errors of precipitation from spaceborne and Ground sensors, Journal of Applied Meteorology, Vol. 32, No. 2, pp. 374-385 https://doi.org/10.1175/1520-0450(1993)032<0374:EOSEOP>2.0.CO;2
  5. North, G. R. and Nakamoto, S. (1989). Formalism for comparing rain estimation designs, Journal of Atmospheric and Oceana-nic Technology, Vol. 6, pp. 985-992 https://doi.org/10.1175/1520-0426(1989)006<0985:FFCRED>2.0.CO;2
  6. Polyak, I. and North, G. R. (1995). The second-moment climatology of the GATE rain rate data, Bulletin of the American Meteorological Society, Vol. 76, No. 4, pp. 535-550 https://doi.org/10.1175/1520-0477(1995)076<0535:TSMCOT>2.0.CO;2
  7. Yoo, C., Valdes, J. B, and North, G. R. (1996). Stochastic modeling of multi-dimensional precipitation fields considering spectra structure, Water Resources Research, Vol. 32, No. 7, pp. 2175-2187 https://doi.org/10.1029/96WR01047
  8. Yoo, C. (2000). On the Sampling of Rainrate Field Using Raingauges and Microwave Attenuation Measurements, Stochastic Environmental Research and Risk Assessment, Vol. 14, No. 1, pp. 69-77 https://doi.org/10.1007/s004770050005
  9. Yoo, C. (2001). Sampling of Soil Moisture Fields and Related Errors: Implications to the optimal sampling design, Advances in Water Resources, Vol. 24 No. 5, pp. 521-530 https://doi.org/10.1016/S0309-1708(00)00033-6
  10. World Meteorological Organization (1994). Guide to Hydrological Practices, pp. 735

Cited by

  1. Evaluation of Raingauge Network using Area Average Rainfall Estimation and the Estimation Error vol.16, pp.1, 2014, https://doi.org/10.17663/JWR.2014.16.1.103
  2. Effect of Zero Measurements on the Spatial Correlation Structure of Rainfall vol.39, pp.2, 2006, https://doi.org/10.3741/JKWRA.2006.39.2.127
  3. Raingauge Network Evaluation Considering the Spatial Distribution and Installation Altitude vol.14, pp.6, 2014, https://doi.org/10.9798/KOSHAM.2014.14.6.347
  4. A Methodology for Rain Gauge Network Evaluation Considering the Altitude of Rain Gauge vol.16, pp.1, 2014, https://doi.org/10.17663/JWR.2014.16.1.113
  5. Evaluation of Stream Gauge Network Considered Discharge Characteristics Between Upstream and Downstream of the River vol.14, pp.4, 2014, https://doi.org/10.9798/KOSHAM.2014.14.4.309
  6. Influence of the Spatial Distribution of a Raingage Network on the Estimation of Areal Average Rainfall : Focusing on Thiessen's Weighting Method vol.15, pp.3, 2015, https://doi.org/10.9798/KOSHAM.2015.15.3.297