Transient Modeling of Single-Electron Transistors for Circuit Simulation

회로 시뮬레이션을 위한 단일전자 트랜지스터의 과도전류 모델링

  • 유윤섭 (한경대학교 정보제어공학과) ;
  • 김상훈 (한경대학교 정보제어공학과)
  • Published : 2003.04.01

Abstract

In this study, a regime where independent treatment of SETs in transient simulations is valid has been identified quantitatively. It is found that as in the steady-state case, each SET can be treated independently even in the transient case when the interconnection capacitance is large enough. However, the value of the load capacitance $C_{L}$of the interconnections for the independent treatment of SETs is approximately 10 times larger than that of the steady state case. A compact SET transient model is developed for transient circuit simulation by SPICE. The developed model is based on a linearized equivalent circuit and the solution of master equation is done by the programming capabilities of the SmartSpice. Exact delineation of several simulation time scales and the physics-based compact model make it possible to accurately simulate hybrid circuits in the time scales down to several tens of pico seconds. The simulation time is also shown to depend on the complexity level of the transient model.l.

본 논문에서는 과도상태 회로 시뮬레이션에서 각각의 단일전자 트랜지스터 (Single electron transistor: SET)가 독립적으로 다루어질 수 있는 영역을 체계적으로 조사했다. Interconnection 정전용량이 충분히 큰 회로의 과도상태 시뮬레이션에서도 정상상태 경우와 마찬가지로 각각의 SET가 독립적으로 다뤄질 수 있음을 찾았다. 그러나, 각각의 SET들이 서로 독립적으로 다뤄질 수 있는 interconnection의 부하정전용량은 정상상태보다 약 10배 정도 크다. 이런 조건에서 SPICE에 적용 가능한 단일전자 트랜지스터 (Single electron transistor: SET)의 과도상태 compact 모델을 제시한다. 이 모델은 SPICE main routine의 admittance 행렬과 전류 행렬 구성 요소를 효율적으로 만들기 위해 새롭게 개발된 등가회로 접근방식에 기초한다. 과도상태 모델은 전자우물 안의 전자 개수를 정확히 계산하기 위해서 시변 master 방정식 solver를 각각 포함한다. 이 모델을 이용해서 단일전자 회로 및 단일전자 소자/회로와 CMOS 회로가 결합한 SET/CMOS hybrid 회로를 성공적으로 계산했다. SPICE에 적용된 기존의 시뮬레이터의 결과와 비교해서 상당히 일치하며 CPU 계산 시간도 더 짧아짐을 보인다.

Keywords

References

  1. Lingjie Guo, Effendi Leobandug, and Stephen Y.Chou, 'A Silicon Single-Electron Transistor Memory Operationg at Room Temperature', Science, Vol. 275, pp. 649-651, 1997 https://doi.org/10.1126/science.275.5300.649
  2. K. Yano, T. Ishii, T. Sano, T. Mine, F. Murai, T. Hashimoto, T. Kobayashi, T. Kure, and K. Seki, 'Single-Electron Memory for Giga-to-Tera Bit Storage', Proc. IEEE, Vol. 87, No. 4, pp. 633-651, 1999 https://doi.org/10.1109/5.752519
  3. Z. A. K. Durrani, A. C. Irvine, H. Ahmed, and Nakazato, 'A momory cell with single-electron and matal-oxide-semiconductor transistor integration', Appl. Phys. Lett, Vol. 74, pp. 1293-1295, 1999 https://doi.org/10.1063/1.123528
  4. Lei Zhuang, Lingjie Guo, and Stephen Y. Chou, 'Room Temerature Silicon Single-Electron Quantum-dot Transistor Switch', in IEDM Tech. Dig., pp 167-169, 1997
  5. B. H. Choi, S. W. Hwang, I. G. Kim, H. C. Shin, Yong Kim, and E. K.Kim, 'Fabrication and room-temperature characterization of a silicon self-assembled quantum-dot transistor', Appl. Phys. Lett., Vol. 73, No. 21, pp. 3129-3131, 1998 https://doi.org/10.1063/1.122695
  6. Akira Fujiwara, Yasuo Takahashi, Kenji Yamazaki, Hideo Namatsu, Masao Nagase, Kenji Kurihara, and Katsumi Murase, 'Silicon double-island single-electron device', in IDEM Tech. Dig., pp. 163-166, 1997
  7. Akiko Ohata, Akira Toriumi and Ken Uchida, 'Coulomb Blockade Effects in Edge Quantum Wire SOI MOSFETs', Jpn J. Appl. Phys., Vol. 36, No. 3B, pp. 1686-1689, 1997 https://doi.org/10.1143/JJAP.36.1686
  8. H. Gravert and M. Devoret, Single Charge Tunneling, New York: Plenum, 1992
  9. MOSES (A. N. Korotov, R. H. Chen, and K. K. Likharev, 'Possible performance of capacitively coupled single-electron transistors in digital circuits', J. Appl. Phys. Vol. 78, No. 4, pp. 2520-2530, 1995.) https://doi.org/10.1063/1.360107
  10. SIMON (C. Wasshuber, H. Kosina, and S. Selberherr, 'SIMON-A Simulator for Singl-Electron Tunnel Devices and Circuits', IEEE Tran. Computer-AidedDesign, Vol. 16, No. 9, pp. 937-944, 1997.) https://doi.org/10.1109/43.658562
  11. SENECA(L. R. C. Fonseca, A. N. Korotov, K. K. Likharev, and A. A. Odintsov, 'A numerical study of the dynamics and statistics of single electron systems', J. Appl. Phys., Vol. 78, No. 5, pp. 3238-3251, 1995.) https://doi.org/10.1063/1.360752
  12. http://www-device.eecs.berkeley.edu/~bsim3
  13. Y. S. Yu, S. W. Hwang, and D. Ahn, 'Macromodeling of single-electron transistors for efficient circuit simulation', IEEE Tran. Electron Devices., Vol. 46, No. 8, pp. 1667-1671, 1999 https://doi.org/10.1109/16.777155
  14. S. Amakawa, H. Majima, H. Fukui, M. Fujishima, and K. Hoh, 'single-electron circuit simulator', IEICE Tran. Electron., Vol. E81-C, pp. 21-29, 1998
  15. M. Kirihara, K. Nakazato, and M. Wagner, 'Hybrid circuit simulator includig a model for single electron tunneling devices', Jpn. J. Appl. Phys., Vol. 38, pp. 2028-2032, 1999 https://doi.org/10.1143/JJAP.38.2028
  16. SmartSpice User Manual, Vol 2, Silvaco International, 1997 and http://www.silvaco.com/products/analog/crusade/smartspice/smartspice_br.html
  17. T. E. Hartman, 'Tunneling of a wave packet', J. Appl. Phy., Vol. 33, No. 12, pp. 3427-3433,1962 https://doi.org/10.1063/1.1702424
  18. R. M. Kielkowski: Inside SPICE, New York: McGraw-Hill, 1994
  19. P. Antognetti and G. Massobrio, Semiconductor device modeling with SPICE, New York: McGraw-Hill, 1988
  20. Y. S. Yu, J. H. Oh, S. W. Hwang, and D. Ahn, https://doi.org/10.1049/el:20020636
  21. H. S. Lee, Y. S. Yu, and S. W. Hwang, 'Displacement current correction for the dc and transient simulation of single electron transistors', J. Korean Phy. Soc., Vol. 33, pp. s266-s269, 1998
  22. M. Y. Jeong, Y. H. Jeong, S. W. Hwang, and D. M. Kim, 'Performance of single electron transistor logic composed of multi-gate single-electron transistors,' Jpn. J. Appl. Phys., Vol. 36, No. 11, pp. 6706-6710, 1997 https://doi.org/10.1143/JJAP.36.6706