Preference Prediction System using Similarity Weight granted Bayesian estimated value and Associative User Clustering

베이지안 추정치가 부여된 유사도 가중치와 연관 사용자 군집을 이용한 선호도 예측 시스템

  • 정경용 (인하대학교 전자계산공학과) ;
  • 최성용 (인하대학교 전자계산공학과) ;
  • 임기욱 (선문대학교 산업공학과) ;
  • 이정현 (인하대학교 컴퓨터공학과)
  • Published : 2003.04.01

Abstract

A user preference prediction method using an exiting collaborative filtering technique has used the nearest-neighborhood method based on the user preference about items and has sought the user's similarity from the Pearson correlation coefficient. Therefore, it does not reflect any contents about items and also solve the problem of the sparsity. This study suggests the preference prediction system using the similarity weight granted Bayesian estimated value and the associative user clustering to complement problems of an exiting collaborative preference prediction method. This method suggested in this paper groups the user according to the Genre by using Association Rule Hypergraph Partitioning Algorithm and the new user is classified into one of these Genres by Naive Bayes classifier to slove the problem of sparsity in the collaborative filtering system. Besides, for get the similarity between users belonged to the classified genre and new users, this study allows the different estimated value to item which user vote through Naive Bayes learning. If the preference with estimated value is applied to the exiting Pearson correlation coefficient, it is able to promote the precision of the prediction by reducing the error of the prediction because of missing value. To estimate the performance of suggested method, the suggested method is compared with existing collaborative filtering techniques. As a result, the proposed method is efficient for improving the accuracy of prediction through solving problems of existing collaborative filtering techniques.

기존의 협력적 필터링 기술을 이용한 사용자 선호도 예측 방법에서는 피어슨 상관 계수에 의해 사용자의 유사도를 구하고, 아이템에 대한 사용자의 선호도를 기반으로 이웃 선정 방법을 사용하므로 아이템에 대한 내용을 반영하지 못할 뿐만 아니라 희박성 문제를 해결하지 못하였다. 본 논문에서는 기존의 사용자 선호도 예측 방법의 문제점을 보완하기 위하여 베이지안 추정치가 부여된 유사도 가중치와 연관 사용자 군집을 이용한 선호도 예측 시스템을 제안한다. 제안한 방법에서는 협력적 필터링 시스템에서의 희박성 문제를 해결하기 위하여 Association Rule Hypergraph Partitioning 알고리즘을 사용하여 사용자를 장르별로 군집하며 새로운 사용자는 Naive Bayes 분류자에 의해 이들 장르 중 하나로 분류된다. 또한, 분류된 장르 내에 속한 사용자들과 새로운 사용자의 유사도를 구하기 위해 Naive Bayes 학습을 통해 사용자가 평가한 아이템에 추정치를 달리 부여한다. 추정치가 부여된 선호도를 기존의 피어슨 상관 관계에 적용할 경우 결측치(Missing Value)로 인한 예측의 오류를 적게 하여 예측의 정확도를 높일 수 있다. 제안된 방법의 성능을 평가하기 위해서 기존의 협력적 필터링 기술과 비교 평가하였다. 그 결과 기존의 협력적 필터링 기술의 문제점을 해결하여 예측의 정확도를 높이는데 효과적임을 확인하였다.

Keywords

References

  1. D. Billsus and M. J. Pazzani, Learning collaborative information filters, In proceedings of the International Conference on Machine Learning, 1998
  2. M. O Connor and J. Herlocker, Clustering Item for Collaborative Filtering, In Proceedings of the ACM SIGIR Workshop on Recommender Systems, Berkeley, CA, 1999
  3. P. Resnick, N. Iacovou, M. Sushak, P. Bergstrom, and J. Riedl. GroupLens: An open architecture for collaborative filtering of netnews. In Proceedings of the Computer Supported Collaborative Work Conference, pages 175-186, 1994 https://doi.org/10.1145/192844.192905
  4. 정경용, 김진현, 이정현, 연관 사용자 군집과 베이지안 분류를 이용한 사용자 선호도 예측 방법, 제28회 한국정보과학회 추계학술발표 논문집(II)-우수논문, pp. 109-111, 2001
  5. C. Basu and H. Hirsh and W. W. Cohen, Recommendation as classification: Using social and content-based information in recommendation. In proceedings of the Fifteenth National Conference on Artificial Intelligence, pp. 714-720, Madison, WI, 1998
  6. M. Balabanovic, and Y. Shoham, 'Fab : Content-Based Collaborative Recommender,' Recommendation Communications of the ACM, Vol.40, No.3, pp.66-77, 1997 https://doi.org/10.1145/245108.245124
  7. N. Good, J. B. Schafer and J. A. Konstan, A. Borchers, B. Sarwar, J. Herlocker, and J. Riedl, Combining collaborative filtering with personal agents for better recommendations, In Proceedings of National Conference on Artificial Intelligence (AAAI-99), pp. 439-446, 1999
  8. W. S. Lee, Collaborative learning for recommender systems, In Proceedings of the Conference on Machine Learning, 1997
  9. I. Soboroff and C. Nicholas, Combining content and collaboration in text filtering, In Proceedings of the IJCAI'99 Workshop on Machine Learning in Information filtering, pp. 86-91, 1999
  10. M. Pazzani, 'A Framework for Collaborative, Content-based and Demographic Filtering,' Artificial Intelligence Review, pp.393-408, 1999 https://doi.org/10.1023/A:1006544522159
  11. E. H. Han, et al., Clustering Based On Association Rule Hypergraphs, Proc. of SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery(DMKD), May, 1997
  12. G. Karypis, V. Kumar, Multilevel k-way Hypergraph Partitioning, DAC, pp. 343-348, 1999 https://doi.org/10.1145/309847.309954
  13. R. Agrawal and R. Srikant, Fast Algorithm for Mining Association Rules, Proc. of the 20th VLDB Conference, pp. 487-499, 1994
  14. J. S. Breese and D. Heckerman and C. Kadie, Empirical Analysis of Predictive Algorithms for Collaborative Filtering, Proc. of the 14th Conference on Uncertainty in Artificial Intelligence, 1998
  15. J. Herlocker, J. Konstan, A. Borchers, and J. Riedl, 'An Algorithmic Framework for Performing Collaborative Filtering,' In Proceedings of ACM SiGIR-99, 1999 https://doi.org/10.1145/312624.312682
  16. R. J. Kwok, Automated text categorization using support vector machine, In Proceedings of the International Conference on Neural Information Processing, PP. 347-451, October, 1998
  17. 정영미, 정보검색론, 구미무역 출판부, 1993
  18. G. Salton, and C. Buckley, 'Term weighting approaches in automatic text retrieval,' Information Processing and Management, Vol.24, No.5, pp. 513-523, 1988 https://doi.org/10.1016/0306-4573(88)90021-0
  19. B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, Analysis of Recommendation Algorithms for E-Commerce. The ACM E-Commerce 2000 Conference, 2000 https://doi.org/10.1145/352871.352887
  20. G. Salton and M. McGill, Introduction to Modem Information Retrieval, McGraw-Hill, New York, 1983
  21. T. Michael, Maching Learning, McGraq-Hill, pp. 154-200, 1997
  22. P. McJones, EachMovie collaborative filtering dataset, URL:http://www.research.digital.com/SRC/eachmovie, 1997
  23. K. Y. Jung, J. H. Lee, Prediction of User Preference in Recommendation System using Association User Clustering and Bayesian Estimated Value, Lecture Notes in Artificial Intelligence 2557, 15th Australian Joint Conference on Artificial Intelligence, December 2-6, 2002