평가함수에 의해 혼합된 다수의 분할 방법을 적용한 Visible Human컬러 영상의 분할

Integration of Multiple Segmentation Methods based on Evaluation Functions for Segmentation of Visible Human Color Images

  • 김한영 (숭실대학교 정보통신전자공학부) ;
  • 김동성 (숭실대학교 정보통신전자공학부) ;
  • 강흥식 (서울대학교 의과대학)
  • 발행 : 2003.04.01

초록

본 논문에서는 두 가지 이상의 분할 방법을 혼합하여 분할했을 때, 분할 결과의 정확성이 전체적으로 개선되어지면서 동시에 영역 경계의 각 부분에서도 단일 분할 방법의 결과보다 향상될 수 있는 혼합형 분할 방법을 제안한다. 이 방법은 다수의 분할 방법을 순차적으로 적용하는데, 한 분할 방법에 의한 결과를 현재 방법과 다음 적용할 방법의 특성을 고려한 평가함수로 분석하여 신뢰도가 높은 부분은 유지하고, 낮은 부분들을 다음 방법들에서 개선한다. 제안된 방법을 Visible human 컬러 영상의 근육을 분할하는데 적용하였고, Balloon 방법, 최소비용경로탐색 방법, 그리고 영역 성장법이 혼합되어 사용되었다. 실험에서 얻어진 최종 분할 결과는 전체적으로 정확성이 개선되었을 뿐만 아니라, 국부적으로도 단일 분할 방법의 결과보다 향상되었음을 확인하였다.

This paper proposes an approach integrating multiple segmentation methods in a systematic way, which can improve overall accuracy without deteriorating accuracy of highly confident segments of boundaries generated by constituent methods. A segmentation method produces boundary segments, which are then evaluated with an evaluation function considering pros/cons of the current and next methods to apply. Boundary segments with low confidence are replaced by a next method while the other segments are kept. These steps are repeated until all segmentation methods are applied. The proposed approach is implemented for the segmentation of muscles in the Visible Human color images. A Balloon method, a minimum cost path finding method, and a Seeded Region Growing method are integrated. The final segmentation results showed improvements in both overall evaluation and segment-based evaluation.

키워드

참고문헌

  1. W. Lie, Automatic target segmentation by locally adaptive image thresholding, IEEE Trans. on Image Processing, Vol. 4, No. 7, pp. 1036-1041, 1995 https://doi.org/10.1109/83.392347
  2. M. Kass, A. Witkin and D. Terzopoulos 'Snakes, active contour models,' International Journal of Computer Vision, Vol.1, 1987, pp.321-331 https://doi.org/10.1007/BF00133570
  3. L. D. Cohen, Note on active contour models and balloons, CVGIP Image Understanding, Vol. 53, pp, 211-218, 1991
  4. Donna J. Williams and Mubarak Shah, 'A Fast Algorithm for Active Contours and Curvature Estimation,' CVGIP: Image Understanding, Vol.55, No.1, January, pp.14-26, 1992 https://doi.org/10.1016/1049-9660(92)90003-L
  5. T. McInerney and D. Terzopoulos, Deformable models in medical image analysis : A Survey, Medical Image Analysis, Vol. 1, No. 2, pp. 91-108, 1996 https://doi.org/10.1016/S1361-8415(96)80007-7
  6. R. Adams and L. Bischof, 'Seeded Region Growing,' IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.16, No.6, pp.641-647, June, 1994 https://doi.org/10.1109/34.295913
  7. L. Vincent and P. Soille, 'Watersheds in Digital Spaces : An Efficient Algorithm based on Immersion Simulations,' PAMI. 13, no. 6, pp 583-589, 1991 https://doi.org/10.1109/34.87344
  8. A. Chakraborty, L. Staib, and J. Duncan, Deformable boundary finding in medical images by integrating gradient and region information, IEEE Trans. on medical imaging, Vol. 15, No. 6, pp. 859-870, 1996 https://doi.org/10.1109/42.544503
  9. A. Chakraborty and J. S. Duncan, Game-theoretic integration for image segmentation, IEEE Trans. on the Pattern Analysis and Machine Intelligence, Vol. 21, No. 1, pp. 12-30, 1999 https://doi.org/10.1109/34.745730
  10. M. E. Leventon, W. E. L. Grimson, and O. Faugeras, Statistical shape influence in geodesic active contours, Proc. Computer Vision and Pattern Recognition, pp. 316-323, 2000 https://doi.org/10.1109/SSBI.2002.1233989
  11. J. Lee, D. Kim, and H. S. Kang, User steered balloon : Application to thigh muscle segmentation of visible human, Journal of Korea Information Science Society, Vol. 27, No. 3, pp. 266-274, 2000
  12. C. Chu and J. K. Aggarwal, The integration of image segmentation maps using region and edge information, IEEE Trans. on the Pattern Analysis and Machine Intelligence, Vol. 15, No. 12, pp. 1241-1252, 1993 https://doi.org/10.1109/34.250843
  13. M. J. Ackerman, The visible human project, Proceedings of the IEEE, Vol. 86 No. 3, pp. 504-511, 1998 https://doi.org/10.1109/5.662875
  14. C. Vikram and Y. M. Kim, A methodology for evaluation of boundary detection algorithm on medical images, IEEE Transactions on Medical Imaging, Vol. 16, No. 5, pp. 642-652, 1997 https://doi.org/10.1109/42.640755