DOI QR코드

DOI QR Code

(+)-Catechin is a Potent Inhibitor of Intestinal Absorption of Cholesterol in Rats

  • Noh, Sang K. (Department of Nutritional Sciences, University of Connecticut) ;
  • Koo, Sung I. (Department of Nutritional Sciences, University of Connecticut) ;
  • Jiang, Yongzhi (Department of Nutritional Sciences, University of Connecticut)
  • Published : 2003.03.01

Abstract

Catechins exhibit a hypocholesterolemic effect in cholesterol-fed animals. The present study was conducted to examine whether (+)-catechin influences the absorption of cholesterol in rats. Male Sprague-Dawley rats were fed ad libitum an AIN-93G diet containing soybean oil for 5 wk. Rats with lymph cannulae were infused at 3.0 mL/h for 8 h via a duodenal catheter with a lipid emulsion containing radiolabeled cholesterol with or without (+)-catechin. Lymph was collected hourly for 8 h. The enteral infusion of (+)-catechin significantly lowered the lymphatic absorption of $^{14}$ C-cholesterol (21.1 $\pm$ 3.6% dose/B h) compared with controls infused with the lipid emulsion devoid of (+)-catechin (38.2 $\pm$ 1.2% dose/8 h). The intestinal absorption of $\alpha$-tocopherol (24.2$\pm$3.0% dose/8 h) also was significantly decreased by (+)-catechin infusion, relative to controls (32.2$\pm$2.2% dose/8 h). However, the lymphatic outputs of oleic acid and phospholipid were not affected by enteral (+)-catechin infusion. The results indicate that (+)-catechin has a profound inhibitory effect on the intestinal absorption of cholesterol and $\alpha$-tocopherol without affecting the absorption of fat.

Keywords

References

  1. Assmann G, Cullen P, Jossa F, Lewis B, Mancini M. 1999. Coronary heart disease: reducing the risk. The scientific background to primaryand secondary prevention of coronary heart diesease: a worldwide view. Arterioscler Thromb Vase Biol 19: 1819-1824 https://doi.org/10.1161/01.ATV.19.8.1819
  2. Hertog MGL, Feskens EJM, Hollman PCH, Katan MB, Kromhout D. 1993. Dietary antioxidant flavonoids and risk of coronaryheart disease: the ZutphenElderly Study. Lancet 342: 1007-1011 https://doi.org/10.1016/0140-6736(93)92876-U
  3. Ness AR, Powles JW. 1997. Fruits and vegetables, and car-diovascular disease: a review. Int J Epidemiol 26: 1-13 https://doi.org/10.1093/ije/26.1.1
  4. Knekt P, Kumpulainen J, Jarvinen R, Rissanen H, Heliovaara M, Reunanen A, Hakulinen T. 2002. Flavonoid intake and risk of chronic diseases. Am J Clin Nutr 76: 560-568
  5. Geleijnse JM, Launer LJ, van der Kuip DAM, Hofman A, Witteman JCM. 2002. Inverse association of tea and fla-vonoid intakes with incident myocardial infarction: the Rotterdam Study. Am J Clin Nutr 75: 880-886
  6. Kurowska EM, Borradaile NM, Spence JD, Carroll KK. 2000. Hypocholesterolemic effects of dietary citrus juices in rabbits. Nutr Res 20: 121-129 https://doi.org/10.1016/S0271-5317(99)00144-X
  7. Bok S-H, Lee S-H, Park Y-B, Bae K-H, Son K-H, Jeong T-S, Choi M-S. 1999. Plasma and hepatic cholesterol and hepatic activities of 3-hydroxy-3-methyl-glutaryl-CoA reductase and acyl CoA: cholesterol transferase are lower in rats fed citrus peel extract or a mixture of citrus biofla-vonoids. J Nutr 129: 1182-1185
  8. Arai Y, Watanabe S, Kimira M, Shimoi K, Mochizuki R, Kinae N. 2000. Dietary intakes of flavonoids, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol con-centration. J Nutr 130: 2243-2250
  9. Arts ICW, van de Putte B, Hollman PCH. 2000. Catechin contents of foods commonly consumed in the Netherlands. I. fruits, vegetables, staples foods, and processed foods. J Agric Food Chem 48: 1746-1751 https://doi.org/10.1021/jf000025h
  10. Arts ICW, van de Putte B, Hollman PCH. 2000. Catechin contents of foods commonly consumed in the Netherlands. 2. tea, wine, fruit juices, and chocolate milk. J Agric Food Chem 48: 1752-1757 https://doi.org/10.1021/jf000026+
  11. Mangiapane H, Thomson J, Salter A, Brown S, Bell GD, White DA. 1992. The inhibition of the oxidation of low den-sity lipoprotein by (+)-catechin, a naturally occurring fla-vonoid. Biochem Pharmacol 43: 445-450 https://doi.org/10.1016/0006-2952(92)90562-W
  12. Xu R, Yokoyama WH, Irving D, Rein D, Walzem RL, German JB. 1998. Effect of dietary catechin and vitamin E on aortic fatty streak accumulation in hypercholesterolemic hamsters. Atherosclerosis 137: 29-36 https://doi.org/10.1016/S0021-9150(97)00248-7
  13. Muramatsu K, Fukuyo M, Hara Y. 1986. Effect of green tea catechins on plasma cholesterol level in cholesterol-fed rats. J Nutr Sci Vitaminol 32: 613-622 https://doi.org/10.3177/jnsv.32.613
  14. Yang TTC, Koo MWL. 1997. Hypocholesterolemic effects of Chinese tea. Pharmacol Res 35: 505-512 https://doi.org/10.1006/phrs.1997.0176
  15. Suzuki H, Ishigaki A, Hara Y. 1998. Long-term effect of a trace amount of tea catechins with perilla oil on the plasma lipids in mice. Int J Vitam Nutr Res 68: 272-274
  16. Chan PT, Fong WP, Cheung YL, Huang Y, Ho WKK, Chen ZY. 1999. Jasmine green tea epicatechins are hypolipidemic in hamsters (Mesocricetus auratus) fed a high fat diet. J Nutr 129: 1094-1101
  17. Juhel C, Armand M, Pafumi Y, Rosier C, Vandermander J, Lairon D. 2000. Green tea extract $(AR25^\circledR)$ inhibits lip-olysis of triglycerides in gastric and duodenal medium in vitro. J Nutr Biochem 11: 45-51 https://doi.org/10.1016/S0955-2863(99)00070-4
  18. Lindahl M, Tagesson C. 1997. Flavonoids as phospholipase $A_2$ inhibitors: importance of their structure for selective inhibition of group II phospholipase $A_2$. Inflammation 21: 347-356 https://doi.org/10.1023/A:1027306118026
  19. Wang S, Noh SK, Koo SI. 2001. Green tea catechins inhibit porcine pancreatic phospholipase $A_2$ activity in vitro. FASEB J 15: LB475 (abs) https://doi.org/10.1096/fj.00-0274com
  20. $L\ddot oest$ HB, Noh SK, Koo SI. 2002. Green tea extract inhibits the lymphatic absorption of cholesterol and $\alpha tocopherol$ in ovariectomized rats. J Nutr 132: 1282-1288
  21. Reeves PG, Nielsen FH, Fahey GC, Jr. 1993. AIN-93 puri-fied diets for laboratory rodents: final report of the American Institute of Nutrition Ad Hoc Writing Committee on the reformulation of the AIN-76A rodent diet. J Nutr 123: 1939-1951
  22. Reeves PG. 1996. AIN-93 purified diets for the study of trace element metabolism in rodents. In Trace Elements in Labo-ratory Rodents. Watson RR, ed. CRC Press, Boca Raton, FL. p 3-37
  23. Kim E-S, Noh SK, Koo SI. 1998. Marginal zinc deficiency lowers the lymphatic absorption of $\alpha-tocopherol $ in rats. J Nutr 128: 265-270
  24. Raheja RK, Kaur C, Singh A, Bhatia IS. 1973. New color-imetric method for the quantitative estimation of phospholi-pids without acid digestion. J Lipid Res 14: 695-697
  25. Zaspel BJ, Csallany AS. 1983. Determination of alpha-tocopherol in tissues and plasma by high-performance liquid chromatography. Anal Biochem 130: 146-150 https://doi.org/10.1016/0003-2697(83)90661-9
  26. Noh SK, Koo SI. 2001. Feeding of a low-zinc diet lowers the tissue concentration of $\alpha -tocopherol$ in adult rats. Biol Trace Elem Res 81: 153-168 https://doi.org/10.1385/BTER:81:2:153
  27. Rudel LL, Morris MD. 1973. Determination of cholesterol using O-phthalaldehyde. J Lipid Res 21: 364-366
  28. Sperry WM, Webb M. 1950. A revision of the Scholenheimer-Sperry method for cholesterol determination. J Biol Chem 187: 97-100
  29. Jiang Y, Noh SK, Koo SI. 2001. Egg phosphatidylcholine decreases the lymphatic absorption of cholesterol in rats. J Nutr 131: 2358-2363
  30. Folch J, Lees M, Sloane-Stanley GH. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J Bioi Chem 226: 497-509
  31. Slover HT, Lanza E. 1979. Quantitative analysis of food fatty acids by capillary gas chromatography. J Am Oil Chem Soc 56: 933-943 https://doi.org/10.1007/BF02674138
  32. Wang S, Noh SK, Koo SI. 2002. Green tea epigallocatechin gallate inhibits the luminal hydrolysis and lymphatic output of phosphatidycholine and lowers the lymphatic absorption of fat and $\alpha -tocopherol$ in ovariectomized rats. FASEB J 16: A644 (abs)
  33. Homan R, Hamelehle KL. 1998. Phospholipase $A_2$ relieves phosphatidylcholine inhibition of micellar cholesterol ab-sorption and transport by human intestinal cell line Caco-2. J Lipid Res 39: 1197-1209
  34. Mackay K, Starr JR, Lawn RM, Ellsworth JL. 1997. Phos-phatidylcholine hydrolysis is required for pancreatic cho-lesterol esterase- and phospholipase $A_2$-facilitated choles-terol uptake into intestinal Caco-2 cells. J Biol Chem 272: 13380-13389 https://doi.org/10.1074/jbc.272.20.13380
  35. Young SC, Hui D. 1999. Pancreatic lipase/colipase-rnediated triglyceride hydrolysis is required for cholesterol transport from lipid emulsions to intestinal cells. Biochem J 339: 615-620 https://doi.org/10.1042/0264-6021:3390615
  36. Ottolenghi A. 1964. Estimation and subcellular distribution of lecithinase activity in rat intestinal mucosa. J Lipid Res 5: 532-537
  37. Subbaiah PV, Ganguly J. 1970. Studies on the phospholi-pases of rat intestinal mucosa. Biochem J 118: 233-239 https://doi.org/10.1042/bj1180233
  38. Le Kim D, Betzing H. 1976. Intestinal absorption of polyun-saturated phosphatidylcholine in the rat. Hoppe-Seylers Z Physiol Chem 357: 1321-1331 https://doi.org/10.1515/bchm2.1976.357.2.1321
  39. Scow RO. 1967. Incorporation of dietary lecithin and ly-solecithin into lymph chylomicrons in the rat. J Bioi Chem 242: 4919-4924
  40. Clark SB. 1978. Chylomicron composition during duodenal triglyceride and lecithin infusion. Am J Physiol 235: E183-E190
  41. Koo SI, Noh SK. 2001. Phosphatidylcholine inhibits and Iysophosphatidylcholine enhances the lymphatic absorption of $\alpha -tocopherol$ in adult rats. J Nutr 131: 717-722
  42. Pownall HJ, Hickson DL, Smith LC. 1983. Transport of biological lipophiles: effect of lipophile structure. J Am Chem Soc 105: 2440-2445 https://doi.org/10.1021/ja00346a055
  43. Pisters KMW, Newman RA, Coldman B, Shin DM, Khuri FR, Hong WK, Glisson BS, Lee JS. 2001. Phase I trial of oral green tea extract in adult patients with solid tumors. J Clin Oneal 19: 1830-1838 https://doi.org/10.1200/JCO.2001.19.6.1830

Cited by

  1. A study to reduce the intestinal transport of endosulfan by indole vol.21, pp.1, 2014, https://doi.org/10.11002/kjfp.2014.21.1.91
  2. Effect of Green Tea Extract on the Luminal Uptake of Dioxin and Oleic Acid by the Intestinal Mucosa in a Rat Model vol.50, pp.1, 2021, https://doi.org/10.3746/jkfn.2021.50.1.112