Yielding behaviour of organically treated anatase $TiO_2$ suspension

  • Guo, J. (Department of Chemical Engineerig, Monash University) ;
  • Tiu, C. (Department of Chemical Engineerig, Monash University) ;
  • Uhlherr, P.H.T. (Department of Chemical Engineerig, Monash University) ;
  • Fang, T.N. (Department of Chemical Engineering, East China University of Science and Technology, Shanghai, China)
  • Published : 2003.03.01

Abstract

The rheological behaviour of anatase $TiO_2$ with organic coating has been investigated extensively in this study. The yield stress was measured over a wide range of solids concentration and pH using stress-controlled and speed-controlled rheometers. The organic treatment leads to a shift of the isoelectric point (IEP) from around pH 5.5 to pH 2.4. A maximum yield stress occurs in the vicinity of the isoelectric point determined by electrokinetic measurements. The transition of rheological behaviour between elastic solid and viscous liquid is represented by a stress plateau in a plot of stress against strain. It is hypothesised that the slope of the stress plateau reflects the uniformity of the structure, and hence the distribution of bond strength. Altering the concentration and the surface chemistry can vary the bond strength and its distribution. therefore, resulting in different type of failure: "ductile-type" or "brittle-type". pH and volume fraction dependence of yield stress could be described quantitatively using existing models with reasonable agreement.easonable agreement.

Keywords

References

  1. Rheol. Acta v.24 The yield stress myth Barnes, H. A.;K. Walters https://doi.org/10.1007/BF01333960
  2. J. Non-Newtonian Fluid Mech. v.81 The yield stress- a review or παυτα πει- everything flows? Barnes, H. A. https://doi.org/10.1016/S0377-0257(98)00094-9
  3. Applied Rheology v.9 A brief history of the yield stress Barnes, H. A.
  4. Ind. Eng. F. v.3 Adsorption of some organic surfactants on rutile surhaces Cheever, G. D.;E. G. Bonalek https://doi.org/10.1021/i160010a001
  5. Rheol. Acta v.25 Yield stress: a time-dependent property and how to measure it Cheng, D. C.-H. https://doi.org/10.1007/BF01774406
  6. Rheol. Acta. v.33 Elastic modulus and yield stress of suspension De Kee, D.;R. P. Chhabra https://doi.org/10.1007/BF00437308
  7. Acta Physiochem. v.14 Theory of the stability of strongly charged lyphobic sols of the adhesion of strongly charged particles in solutions of electrolytes Derjaguin, B.;Landau, L.
  8. J. Pheol. v.36 Letter to the editor : on the nature of the yield stress Evans, I. D.
  9. J. Colloid Interface Sci. v.57 Flow properties of coagulated colloidal suspensions Ⅲ. The elastic floc model Firth, B. A.;R. J. Hunter https://doi.org/10.1016/0021-9797(76)90202-2
  10. J. Colloid Interface Sci. v.57 Flow properties of coagulated colloidal suspensions II. Experimental properties of the flow curve parameters Firth, B. A.;R. J. Hunter https://doi.org/10.1016/0021-9797(76)90201-0
  11. J. Colloid Interface Sci. v.242 Shear-induced aggregation of anatase dispersions investigated by oscillation and low shear rate viscometry Gustafsson, J.;E. Nordenswan;J. B. Rosenholm https://doi.org/10.1006/jcis.2001.7764
  12. J. Rheol. v.33 Thehnical note: The yield stress- an engineering reality Hartnett, J. P.;R.Y.Z. Hu https://doi.org/10.1122/1.550006
  13. Chem. Eng. Sci. v.48 Preparation of oxide dispersions which are stabilized both sterically and electrostatically Heijman, S. G.;H. N. Stein https://doi.org/10.1016/0009-2509(93)80019-M
  14. Elasticity, plasticity and structure of matter (third edition) Houwink, R.;H. K. de Decker
  15. J. Colloid Interface Sci. v.28 The dependence of plastic flow behaviour of clay suspensions on surface properties Hunter, R. J.;S. K. Nicol https://doi.org/10.1016/0021-9797(68)90127-6
  16. Colloids and Surfaces A: Physicochem. Eng. Aspects v.141 Volume fraction effects in shear rheology and electroacoustic studies of concentrated alumina and kaolin suspentions Johnson, S. B.;A. S. Russell;P. J. Scales https://doi.org/10.1016/S0927-7757(98)00208-8
  17. AIChE Journal v.43 A theoreical frame-work for the yield stress of suspensions loaded with size distributed particles Kapur, P. C.;P. J. Scles;D. V. Boger;T. W. Healy https://doi.org/10.1002/aic.690430506
  18. J. Colloid Interface Sci. v.209 Correlation between the zeta potential and rheological properties of anatase dispersions Kosmulski, M.;J. Gustafsson;J. B. Rosenholm https://doi.org/10.1006/jcis.1998.5884
  19. Proc. 2nd International Conference on ER Fluids, Proc. 2nd International Conference on ER Fluids Lancaster Comments in ER fluid rheology Kraynik, A. M.
  20. J. Am. Ceram. Soc. v.78 Effect of particle size on colloidal zirconia rhiology at the iso-electric point Leong, Y.-K.;P. J. Scales;T. W. Healey;D. V. Boger https://doi.org/10.1111/j.1151-2916.1995.tb08638.x
  21. Ph. D. Thesis University of Melbourne Liddell, P. V.
  22. J. Non-Newtonian Fluid Mech. v.63 Yield stress measurement with the vane Liddell, P. V.;D. V. Boger https://doi.org/10.1016/0377-0257(95)01421-7
  23. Chemical Engineering J. v.67 The influence of ph and temperature on the rheoloty and stability of aqueous tiranium dioxide dispersions Mikulasek, P.;R. J. Wakemam;J. Q. Marchant https://doi.org/10.1016/S1385-8947(97)00026-0
  24. J. Rheol. v.29 Direct yield stress measurement with the vane method Nguyen, Q. D.;D. V. Boger https://doi.org/10.1122/1.549794
  25. Proc. IX Intl. Congress on Rheology Models for rheological behaviour of concentrated disperse media under shear Quemada, D.
  26. AIChE Journal v.44 Shear yield stress of partially flocculated colloidal suspensions Scale, P. J.;S. B. Johnson;T. W. Healy https://doi.org/10.1002/aic.690440305
  27. Rheol. Acta v.29 The yield stress -an empirical reality Schurz, J. https://doi.org/10.1007/BF01332384
  28. J. Rheol. v.39 At last, a true liquid-phaes yield stress Spaans, R. D.;M. C. Williams https://doi.org/10.1122/1.550684
  29. Chem. Eng. Sci. v.48 Effect of PAA adsorption on stability and rheology of TiO₂dispersions Struauss, H.;H. Heegn;I. Strienitz https://doi.org/10.1016/0009-2509(93)80020-Q
  30. AIChE Journal v.7 Ⅲ. Laminar-flow properties of flocculated suspensions Thomas, D. G. https://doi.org/10.1002/aic.690070317
  31. Rheol. Acta v.36 Modelling the thixotropic hebaviour of dense cohesive sediment suspensions Toorman, E. A. https://doi.org/10.1007/BF00366724
  32. 3rd Pacific Rim Conference on Rheology The shear-induced solid-liquid transition in polymer gels and concentrated suspensions Uhlherr, P. H. T.;X.-M. Zhang;J. Guo;J. Z.-Q. Zhou;C. Tiu
  33. Theory of stability of lyphobic colloids Verwey, E.J.W.;J.Th.G. Overbeek
  34. Rheol. Acta v.24 A new interpretation of viscosity and yield stress in dense slurries : Coal and other irreguar particles Wildemuth, C. R.;M. C. Williams https://doi.org/10.1007/BF01329266
  35. J. Colloid Interface Sci. v.236 Rheological behaviour of titanium dioxide suspensions Yang, H.-G.;C.-Z. Li;H.-C. Gu;T.-N. Fang https://doi.org/10.1006/jcis.2000.7373
  36. J. Rheol. v.43 The yield stress of concentrated flocculated suspensions of size distributed particles Zhou, Z.;M. J. Solomon, P. J. Scales;D. V. Boger https://doi.org/10.1122/1.551029
  37. Rheol. Acta v.34 Yield stress and maximum packing fraction of concentrated suspensions Zhoum Z. Q.;T. N. Fang;G. Lou;P.H.T. Uhlherr https://doi.org/10.1007/BF00712315