Identification of vitro vulnificus lrp and Its Influence on Survival Under Various Stresses

  • Jeong, Hye-Sook (Department of Food Science and Technology Department of Molecular Biotechnology, Institute of Biotechnology Chonnam National University) ;
  • Rhee, Jee-Eun (Department of Food Science and Technology Department of Molecular Biotechnology, Institute of Biotechnology Chonnam National University) ;
  • Lee, Jeong-Hyun (Department of Food Science and Technology Department of Molecular Biotechnology, Institute of Biotechnology Chonnam National University) ;
  • Choi, Hyun-Kyung (Department of Food Science and Technology Department of Molecular Biotechnology, Institute of Biotechnology Chonnam National University) ;
  • Kim, Dae-Il (Department of Food Science and Technology Department of Molecular Biotechnology, Institute of Biotechnology Chonnam National University) ;
  • Lee, Myung-Hee (Department of Food Science and Technology Department of Molecular Biotechnology, Institute of Biotechnology Chonnam National University) ;
  • Park, Soon-Jung (Department of Parasitology and Institute of Tropical Medicine, Yonsei University) ;
  • Choi, Sang-Ho (Department of Food Science and Technology Department of Molecular Biotechnology, Institute of Biotechnology Chonnam National University)
  • Published : 2003.02.01

Abstract

An lrp gene encoding a leucine-responsive regulatory protein was identified from Vitro vulnificus, and its role in the survival of the organism was assessed by analyzing the stress tolerance of the isogenic mutant, in which the lrp gene had been inactivated. The results demonstrated that Lrp contributes to the survival of V. vulnificus is dependent of the phase of growth.

Keywords

References

  1. Annu. Rev. Microbiol. v.34 Diseases of humans (other than cholera) caused by vibrios Blake, P. A.;R. E. Weaver;D. G. Hollis https://doi.org/10.1146/annurev.mi.34.100180.002013
  2. J. Bacteriol. v.177 Central regulatory role for the RpoS sigma factor in expression of Salmonella dublin plasmid virulence genes Chen, C.;N. C. Buchmeier;S. Libby;F. C. Fang;M. Krause;D. G. Guiney
  3. Appl. Environ. Microbiol. v.66 Contribution of dps to acid stress tolerance and oxidative stress tolerance in Escherichia coli O157:H7 Choi, S. H.;D. J. Baumler;C. W. Kaspar https://doi.org/10.1128/AEM.66.9.3911-3916.2000
  4. Infect. Immun. v.59 Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector Donnenberg, M. S.;J. B. Kaper
  5. J. Biol. Chem. v.276 Differential expression of Vibrio vulnificus elastase gene in a growth phase-dependent manner by two different types of promoters Jeong, H. S.;K. C. Jeong;H. K. Choi;K. J. Park;K. H. Lee;J. H. Rhee;S. H. Choi
  6. Infect. Immun. v.68 Construction and phenotypic evaluation of a Vibrio vulnificus vvpE mutant for elastolytic protease Jeong, K. C.;H. S. Jeong;S. E. Lee;S. S. Shung;J. H. Rhee;A. M. Starks;G. M. Escudere;P. A. Gulig;S. H. Choi https://doi.org/10.1128/IAI.68.9.5096-5106.2000
  7. J. Microbiol. Biotechnol. v.12 Identification and functional analysis of the putAP genes encoding Vibrio vulnificus proline dehydrogenase and proline permease Kim, H. J.;J. H. Lee;J. E. Rhee;H. S. Jeong;H. K. Choi;H. J. Chung;S. R. Ryu;S. H. Choi
  8. Ann. Intern. Med. v.109 Syndromes of Vibrio vulnificus infections, Clinical and epidemiologic features in Florida cases, 1981-1987 Klontz, K. C.;S. Lieb;M. Schreiber;H. T. Janowski;L. M. Baldy;R. A. Gunn https://doi.org/10.7326/0003-4819-109-4-318
  9. Annu. Rev. Microbiol. v.47 The stationary phase of the bacterial life cycle Kolter, R.;D. A. Siegele;A. Tormo https://doi.org/10.1146/annurev.mi.47.100193.004231
  10. Molec. Microbiol v.5 Identification of a central regulator of stationary-phase gene expression in Escherichia coli Lange, R.;R. Hennge-Aronis https://doi.org/10.1111/j.1365-2958.1991.tb01825.x
  11. J. Microbiol. Biotechnol. v.11 Enumeration of Vibrio vulnificus in natural smaples by colony blot hydridization Lee, J. H.;K. H. Lee;S. H. Choi
  12. J. Bacteriol. v.174 Environmental signals controlling expression of virulence determinants in bacteria Mekalanos, J. J.
  13. J. Bacteriol. v.170 A novel suicide vector and its use in construction of insertion mutation: Osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR Miller, V. L.;J. J. Mekalanos
  14. Science v.243 Coordinate regulation and sensory transduction in the control of bacterial virulence Miller, J. F.;J. J. Mekalanos;S. Falkow https://doi.org/10.1126/science.2537530
  15. Cell v.68 The leucine-Lrp regulon in E. coli: A global response in search of a raison dEtre Newman, E. B.;R. DAri;R. T. Lin https://doi.org/10.1016/0092-8674(92)90135-Y
  16. J. Mol. Biol. v.147 Nucleotide sequence of the kanamycin resistance transposon Tn903 Oka, A.;H. Sugisaki;M. Takanami https://doi.org/10.1016/0022-2836(81)90438-1
  17. FEMS Microbiol. v.208 Identification of the cadBA operon from fivro vulnificus and its influece on survival to acid stress Rhee, J. E.;J. H. Rhee;P. Y. Ryu;S. H,Choi https://doi.org/10.1111/j.1574-6968.2002.tb11089.x
  18. J. Bacteriol. v.169 Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea Staskawicz, B.;D. Dahlbeck;K. Keen;C. Napoli
  19. Escherichia coli. Proc. Natl. Acad. Sci. USA v.90 Heterogeneity of the principal s factor in Escherichia coli: The rpoS gene product,σ$^{38}$, is a second principal σ factor RNA polymerase in stationary-phase Tanaka, K.;Y. Takayanagi;N. Fujita;A. Ishihama;H. Takahashi https://doi.org/10.1073/pnas.90.8.3511