초염기성 사문암 토양 중 세균군집의 계통학적 특성

Phylogenetic Characteristics of Bacterial Populations Found in Serpentinite Soil

  • 이종화 (목원대학교 생명과학부 미생물학과) ;
  • ;
  • 황경숙 (목원대학교 생명과학부 미생물학과)
  • ;
  • Tomoyoshi Hashimoto (Department of Agro-Environmental Research, National Agricultural Reseach Center for Kyushu Okinawa Region) ;
  • 발행 : 2003.03.01

초록

충남 홍성군 광천 사문암 토양지역의 석면폐광석(KS1)과 인근 토양(KG, KS2)은 pH8.5-9.2를 나타내어 초염기성 토양임이 확인되었다. KSI과 KS2 토양으로부터 통상농도의 alkaline 배지(AL)와 AL 배지를 $10^{-2}$로 희석한 DAL배지를 사용하여 평판법으로 세균수를 측정한 결과 AL 배지에서보다 DAL배지에서 10-100배 이상 높은 계수치를 나타내었다. 초염기성 사문암 토양으로부터 분리된 75균주에대해 통상농도의 AL 배지에서의 중식 유무를 확인한 결과, 통상농도의 AL배지에서 증식 가능한 [AL세균군]과 AL배지에서는 증식이 저해되고 DAL 배지에서만 증식 가능한 [DAL세균군으로 크게 나누었다. DAL세균(42균주)은 $10^{-3}$ AL 배지(약 6mg C/L)에서도 증식 가능한 저영양성세균(oligotrophic bacteria)으로 사문암 토양 중 50% 이상 분포해 있음이 확인되었다. 분리된 75 균주의 16S rDNA 염기서열을 결정하여 계통해석한 결과 proteobacteria $\alpha$-subdivision (3균주), $\beta$-subdivision (7균주), $\gamma$-subdivision (2균주), high G+C gram-positive bacteria (19균주)와 low G+C gram-positive bacteria (14 strains)의 계통군을 나타내었다. 이들 세균중 AL세균군(34균주)은 high G+C gram positive bacteria 에 속하는 streptomyces과 low G+C gram positive bacteria에 속하는 Bacillus로 구성되었다. 한편, DAL세균군(42균주)은 high G+C 및 low G+C gram positive 계통군 이외에도 proteobacteria -subdivision에 속하는 Afipia와 Ralstonia, proteobacteria -subdivision에 속하는 Variovorax, proteobacteria $\beta$-subdivision에 속하는Pseudomonas로 구성되어 계통학적으로 다양한 세균임이 확인되었다.

A phylogenetic analysis of bacterial populations inhabiting soil derived from serpentine was conducted. The samples were collected from adjacent metamorphic rocks and serpentinite soil at Kwangcheon. The pH of the serpentine areas ranged from 8.5 to 9.2. The number of bacteria on the DAL medium which was diluted with $10^{-2}$ of AL medium was 10~100 fold higher than that from the full strength of AL medium, and which indicates that oligotrophs are distributed in the serpentinite soil. Of a total of 76 isolates, 42 isolates were oligotrophic bacteria, which grew only on the DAL medium. Based on a phylogenetic analysis using 16S rDNA sequences, these isolates are found to fall within five major phylogenetic groups: proteobacteria $\alpha$-subdivision (3 strains), $\alpha$-subdivision (7 strains), $\gamma$-subdivision (2 trains); high G+C gram-positive bacteria (19 strains); low G+C grampositive bacteria (14 strains). Bacteria of the genus Streptomyces (high G+C division) and Bacillus (low G+C division) have been considered to form a numerically important fraction of serpentinite soil. Oligotrophic strains categorized as Afipia ($\alpha$-subdivision), Ralstonia, Variovorax ($\beta$-subdivision), Pseudomonas ($\gamma$ -subdivision), Arthrobacter (high G+C division), and Streptomyces (low G+C division).

키워드

참고문헌

  1. 한국환경생태학회지 v.20 사문암 지역에서 생육하는 대나물(Gypsophila oldhaniana)의 중금속 함량. 김명희;민일식;송석환
  2. 한국환경생태학회지 v.14 충남 사문암 지역 토양 식물체 및 계류의 중금속 오염 김명희;송석환;민일식;장인수
  3. 광산지질 v.24 충남 예산지구 활광산의 성인에 대한 연구 우영균;최석원;박기화
  4. Environ. Microbiol. v.3 Chracterization of nickel-resistant bacteria isolated from serpentine soil Mengoni, A.;R. Bazanti;C. Gonnelli;R. Gabbrielli;M. Bazzicalupo https://doi.org/10.1046/j.1462-2920.2001.00243.x
  5. Ottawa. Ontario. Serpentine mineralogy of ultrabasic intrusion in Canada and on the Midatlantic Ridge. Aumento, F.
  6. The Vegetation of ultramafic (serpentinite) soils. Bakre, A.J.M.;J. Protocor;R. D. Reeves
  7. Serpentine and its vegetation: A multidisciplinary Brooks, R.R.
  8. Soil. Sci. v.81 Effect of soil reaction on uptake of nickel from a serpentine soil. crooke, W. M. https://doi.org/10.1097/00010694-195604000-00003
  9. Mol. Biotechnol. v.12 Heavy metals bioremediation of soil. Diels, L.;De M. Smet;L. Hooyberghs;P. Corbisier https://doi.org/10.1385/MB:12:2:149
  10. Soil. Sci. v.22 Why the serpentine and other magnesian soils infertile? Gorden, A.;C.B. Lipman https://doi.org/10.1097/00010694-192610000-00002
  11. Rep. Inst. Agric. Res. Tohoku Univ. v.27 Plate count of bacteria in soil on diluted nutrient broth as a culture medium. Hattori, T.
  12. Nucleic. Acids. Res. v.21 Isolation of genomic DNAs from plants, fungi and bacteria using benzyl chloride Zhu, H.;F. Qu;L.-H. Zhu https://doi.org/10.1093/nar/21.22.5279
  13. Ann. Appl. Biol. v.39 Nickel toxicity in plants. Hunter, J. G.;O. Vergnano
  14. Appl. Environ. Microbiol. v.60 Estimation of diversity and community structure through restriction fragment length polymophism distribution analysis of bacterial 16S rRNA genes from a microbial mat at an active, hydrothermal vent system, Loihi seamount, Hawaii Moyer, C.L.;F.C. Dobbs;D.M. Karl
  15. Am. J. Bot. v.68 Nickel uptake by Streptanthus and Caulanthus with particular reference to the hyperaccumulator S. polygaloides Gray Reeves, R.D.;R.R. Brook;R.M. MacFarlane https://doi.org/10.2307/2442798
  16. Can. J. Microbiol. v.42 Charactrization of microbial communities n heavy metal contaminated soils. Roane, T.M.;S.T. Kellogg https://doi.org/10.1139/m96-080
  17. Mol. Biol. Evol. v.4 The neighbor-joining method: a new method for reconstructing phylogenetic tress. Saitou, N.;M. Nei
  18. Nucleic Acids Res. v.24 The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality anlysis tools. Thompson, J.D.;T.J. Gibson;F. Plewniak;F. Jeanmougin;D.G. Higgins