지속성 영양염제와 유분산제가 해변모래에 오염된 유류의 생분해에 미치는 영향

Effects of Slow Release Fertilizer and Dispersant on Biodegradation of Oil Contaminated in Sand Seashore Mesocosms

  • 손재학 (한국해양연구원 미생물연구실) ;
  • 권개경 (한국해양연구원 미생물연구실) ;
  • 김상진 (한국해양연구원 미생물연구실)
  • 발행 : 2003.03.01

초록

해변에 오염된 유류의 생분해를 증진시키기 위한 지속성 영양염제(Slow Release Fertilizer; SRE)와 유분산제 ($Corexit 9527^{R}$)의 처 리효과를 평가하기 위하여 2 회의 mesocosm실험을 실시하였다. 1 차 현장실험 에서 SRP처리구의 지방족 탄화수소분해율과 n-$C_{17}$/pristane, n-$C_{18}$/phytane비의 감소율은 시험 37일에 각각 85%,69%,61% 로 뚜렷한 생물정화 효과를 보였다. 반면에 $Corexit 9527^{R}$ 처리구에서 지방족 탄화수소의 분해율은 실험기간동안 56%로 대조구(50%)보다 뚜렷한 생물정화효과가 나타나지 않았으며 $Corexit 9527^{R}$과 n-$C_{18}$/phytane비의 감소율 또한 27%, 17%로 대조구(60%, 46%)보다 낮아 유류화합물의 생물정화가 오히려 억제되었다는 사실을 알 수 있었다. 그러나 2차 현장실험에서 SRF와 $Corexit 9527^{R}$을 함께 첨가한 처리구의 생물정화 결과는 지방족 탄화수소의 양, n-$C_{17}$/pristane과 n-$C_{18}$/phytane비의 변화를 관찰한 결과 억제효과는 크지 않았다. 이러한 결과로부터 유류유출시 영양물질의 첨가는 유류분해도를 향상시키는 반면,유분산제를 이용한 처리방법은 자연적인 생물정화기능을 오히려 억제 또는 제한하기 때문에 사용여부가 신중하게 고려되어야 함을 확인할 수 있었다. 따라서 유류오염사고 국가 긴급방제계획에 의한 유분산제의 대량 사용은 생물정화기술의 적용을 염두에 두고 재평가되어야 한다.

To evaluate the effects of slow release fertilizer and chemical dispersant on oil biodegradation, mesocosm studies were conducted on sand seashore. The rapid removal rates (85%) of aliphatic hydrocarbons and the simultaneous decreases of n-$C_{17}$/pristane (69%) and $n-C_{18}/phytane$ (61%) ratios by the addition of slow-release fertilizer (SRF) within 37 days of experiment indicated that SRF could enhance the oil degrading activity of indigenous microorganisms in sand mesocosm. Although the growth of heterotrophic bacteria and petroleumdegrading bacteria in the mesocosm treated with $Corexit 9527^{R}$ was stimulated, the biological oil removal based on the ratios of $Corexit 9527^{R}$ and $n-C_{18}/phytane$ was inhibited. Removal rates of aliphatic hydrocarbons (56%), and n-$C_{17}$/pristane (27%) and $n-C_{18}/phytane$ (17%) ratios by the addition of chemical dispersant $Corexit 9527^{R}$ were similar or lower than those values of control (50, 60, 46%), respectively. The biodegradation activity, however, when simultaneously treated with SRF and $Corexit 9527^{R}$, was not highly inhibited and even recovered after the elimination of chemical dispersant. From these results it could be concluded that the addition of SRF enhanced the oil removal rate in oligotrophic sand seashore and chemical dispersant possibly inhibit the oil biodegradation. Hence, in order to prevent the unrestrained usage of chemical dispersant in natural environments contaminated with oil, the National Contingency Plan of Oil Spill Response should be carefully revised in consideration of the application for bioremedaition techniques.

키워드

참고문헌

  1. 한국생물공학회지 v.13 Hydrocarbon uptake modes에 따른 유류분해 미생물 혼합제의 원유분해능. 고성환;이홍금;김상진
  2. 한국미생물학회지 v.34 자갈로 구성된 미소환경에서 미생물제제에 의한 유류분해. 심두섭;손재학;김상진
  3. Mar. Pollut. Bull. v.32 Effects of the addition of organic carbon sources on bacterial repiration and n-alkane biodegradation of Omani crude oil. Al-Hadhrami, M.N.;H.M. Lappin-scott;P.J. Fisher https://doi.org/10.1016/0025-326X(95)00167-L
  4. Standard methods for the examination of water and wastewater(18th ed.) APHA
  5. Microbiol. Rev. v.45 Microbial degradation of petroleum hydrocarbon: an environmental perspective. Atlas, R.M
  6. Mar. Pollut. Bull. v.31 Petroleum biodegradation and oil spill bioremediation. Atlas, R.M https://doi.org/10.1016/0025-326X(95)00113-2
  7. Proceedings of 1993 International Oil Spill Congerence Enhancement of spilled oil biodegradation by nutrients of natural origin Basseres, A.;P. Eyraud;A. Ladousse;B. Tramier
  8. Biores. Technol. v.74 Factors limiting bioremediation technologies. Boopathy, R. https://doi.org/10.1016/S0960-8524(99)00144-3
  9. Can. J. Microbiol. v.44 Chemically emulsified crude oil as substrate for bacterial oxidation: differences in species response. Bruheim, P.;K. Eimhellen https://doi.org/10.1139/cjm-44-2-195
  10. Appl. Environ. Microbiol. v.64 Effects of surfactant mixtures, including Corexit 9527, on bacterial oxidation of acetate and alkanes in crude oil. Bruheim, P.;H. Bredholt;K. Eimhjellen
  11. Proceedings of 1991 International Oil Spill Conference Bioremediation technology development and application to the Alaskan spill Chianelli, R.R.;T. Aczel;R.E. Bare;G.N. George;M.W. Genowitz;M.J. Grossman;C.E. Haith;F.J. Kaiser;R.R. Lessard;R. Liotta;R.L. Mastracchio;V. Minak-Berneto;R.C. Prince;W.K. Robbins;E.L. Stiefel;J.B. Wilkinson;S.M. Hinton;J.R. Bragg;S.J. McMillan;R.M. Atlas
  12. J. Microbiol. Biotechnol. v.12 Evaluation of fertilizer additions to stimulate oil biodegradation in sand seashore mesocosms Choi, S-C.;K.K. Kwon;J.H. Sohn;S-J. Kim
  13. Proceedings of 1989 International Oil Spill Conference Development and evolution of application techniques for delivery of nutrients to contaminated shoreline in Prince William Sound Glaser, J.A.;A.D. Venosa;E.J. Opatken
  14. Curr. Opin. Biotechnol. v.10 Bioremediation of petroleum hydrocarbon contaminants in marine habitats. Head, L.M.;R.P.J. Swannell https://doi.org/10.1016/S0958-1669(99)80041-X
  15. New developments in marine biotechnology The effects of bioremediation on the oil biodegradation in oil polluted environments. Kim, S-J.;J.H. Sohn;D.S. Sim;K.K. Kwon;T.H. Kim
  16. Biotechnol. Bioeng. v.40 Effects of nonionic surfactants on the solubilization and mineralization of phenanthrene in soil-water system Laha, S.;R.G. Luthy https://doi.org/10.1002/bit.260401111
  17. Proceedings of 1989 International Oil Spill Conference Enhancement of the natural biodegradation of condensative and crude oil on beaches of Atlantic Canada. Lee, K.;E.M. Levy
  18. Proceedings of 1993 International Oil Spill Conference Bioremediation: Application of slow-release fertilizers in low-energy shoreline Lee, K.;G.H. Tremblay;E.M. Levy
  19. Appl. Environ. Microbiol. v.57 Microbial populations and hydrocarbon biodegradation potentials in fertilized shoreline sediments affected by the T/V Exxon Valdez oil spill. Lindstrom, JE.;R.C. Prince;J.C. Clark;M.J. Grossman;T.R. Yeager;J.F. Braddock;E.J. Brown
  20. Appl. Environ. Microbiol. v.61 Biodegradation of naphthalene in aqueous nonionic surfactant system. Liu, Z.;A.M. Jacobson;R.G. Luthy
  21. J. Mar. Biotechnol. v.4 Seed and feed strategy against oil spills in a marine environment: laboratory and simulated outdoor experiments with selected natural bacterial strain Marty, P.;Y. Martin
  22. J. Biotechnol. v.12 The influence of phosphate metabolism on biosurfactant production by Pseudomonas aeruginosa. Mulligan, C.N.;G. Mahmourides;G.F. Gibbs. https://doi.org/10.1016/0168-1656(89)90041-2
  23. Mar. Pollut. Bull. v.42 Effects of nutrients on crude oil biodegradation in the upper intertidal zone Oh, Y-S.;D-S. Sim;S-J. Kim https://doi.org/10.1016/S0025-326X(01)00166-7
  24. Proceedings of the 1993 Oil Spill Conference The effects of bioremediation on the microbial populations of oiled beaches in Prince William Sound, Alaska Prince R. C.;R.E. Bare;G.N. George;C.E. Haith;M.J. Grossman;J.R. Lute;D.L. Elmendorf;V. Minak-Bernero;J.D. Senius;L.G. Keim;R.R. Chianelli;S.M. Hinton;A.R. Teal
  25. Crit. Rev. Environ. Sci. Technol. v.24 Influence of surfactants on microbial degradation of organic compounds Rouse, J.D.;D.A. Sabatini;J.M. Suflita;J.H. Harwell https://doi.org/10.1080/10643389409388471
  26. Proceedings of 1991 International Oil Spill Conference Selection of nutrients to enhance biodegradation for the remediation of oil spilled on beaches Safferman, S.I.
  27. Mar. Pollut. Bull. v.40 Effects of wave action on the bioremediation of crude oil saturated hydrocarbons Santas, R.;P. Santas https://doi.org/10.1016/S0025-326X(99)00239-8
  28. Spill Sci. Technol. Bull. v.3 Evaluation of bioremediation agents in beach microcosms Swannell, R.P.J.;B.C. Croft;A.L. Grant;K. Lee
  29. Microbiol. Rev. v.60 Field evaluations of marine oil spill bioremediation Swannell, R.P.J.;K. Lee;M. McDonagh
  30. Proceedings of 1999 International Oil Spill Conference Bioremediation of oil contaminated fine sediments Swannell, R.P.J.;D. Michaell;D.M. Jones;S. Petch;I.M. Head;A. Willis;K. Lee;J. Lepo
  31. Environ. Sci. Technol. v.30 Bioremediation of an experimental oil spill on the shoreline of Delaware Bay. Venosa, A.D.;M.T. Suidan;B.A. Wrenn;K.L. Strohmeier, J.R.;Haines, A.L.;Eberhart, D. King;E. Holder https://doi.org/10.1021/es950754r
  32. Estuaries v.11 NOAA Gulf of Mexico Status and Trands Program: trace organic contaminant distribution in sediments and oysters Wade, T.L.;E.L. Atlas;J.M. Brooks;M.C. KennicuttⅡ;R.G. Fox;J. Sericano;B. Garcia-Romero;D. De-Freitas https://doi.org/10.2307/1351969
  33. Chronica Botanica Marine microbiology ZoBell, C.E