DOI QR코드

DOI QR Code

Generation of RMS Hazard-Compatible Artificial Earthquake Ground Motions

RMS 가속도에 의한 인공 지진파 생성기법

  • Published : 2003.02.01

Abstract

Due to the random nature of earthquake, the definition of the input excitation is one of the major uncertainties in the seismic response analysis. Furthermore, ground motions that correspond to a limited number of design parameters are not unique. Consequently, a brood range of response values can be obtained even with a set of motions, which match the same target parameters. The paper presents a practical probabilistic approach that can be used to systematically model the stochastic nature of seismic loading. The new approach is based on energy-based RMS hazard and takes account for the uncertainties of key ground motion parameters. The simulations indicate that the new RMS procedure is particularly useful for the rigorous probabilistic seismic response analysis, since the procedure is suitable for generation of large number of hazard-compatible motions, unlike the conventional procedure that aim to generate a small number of motions.

지진응답 해석 시 불확실한 지진현상을 추정하여 설계지진파를 선정하는 것은 어려운 일 중의 하나이다. 게다가 제한된 숫자의 설계인자에 상응하는 지진파가 결코 유일하지 않다는 문제도 있다. 따라서 동일한 설계진도에 상응하는 여러 지진파들로부터 구한 응답치들이 서로 크게 차이가 날 수 있다. 본 논문은 이 같은 지진하중의 불확실성을 체계적으로 고려하는 실용적인 지진파 생성 기법을 제시한다. 이 기법은 에너지 개념의 RMS 지진가속도에 기반하며 주요 지진파 설계인자의 불확실성을 고려한다. 시뮬레이션을 통해, 이 새로운 RMS 기법이 지진재해에 상응하는 지진파를 대량 생성하는 경우에 적합하며 따라서 소량의 지진파 생성에 적합한 기존의 방법들과 비교할 때 특히 확률론적 지진응답 해석 시 유용하다는 점을 확인하였다.

Keywords

References

  1. Lilhanand, K. and Tseng, W. S., “Development andapplication of realistic earthquake time histories compatiblewith multiple damping response spectra,” Proceedings ofthe Ninth World Conference on Earthquake, Tokyo, Japan,1988, pp. 819-824.
  2. Derkiureghian, A. and Crempien, J., “An evolutionarymodel for earthquake ground motion,” Structural Safety,Vol. 6, No. 2-4, 1989, pp. 235-246. https://doi.org/10.1016/0167-4730(89)90024-6
  3. Hartzell, S., “Earthquake aftershocks as Greeen's functions,”Geophysical Research Letters, Vol. 5, No. 1, 1978, pp. 1-4. https://doi.org/10.1029/GL005i001p00001
  4. Housner, G. W. and Jennings, P. C., “Generation ofartificial earthquakes,” Journal of Engineering Mechanics,ASCE, Vol. 90, EM1, 1964, pp. 113-150.
  5. Shinozuka, M., “Digital simulation of ground accelerations,”Proceedings of Fifth World Conference on Earthquake Engineering,Rome, Italy, 1973, pp. 2829-2838.
  6. Kanai, K., “Semi-empirical formula for the seismic characteristics of the ground,” Bulletin of the Earthquake Research Institute, Tokyo University, Vol. 35, 1957, pp.308-325.
  7. Tajimi, H., “A statistical method of determining the maximum response of a building structure during an earthquake,” Proceedings of the Second World Conference on Earthquake Engineering, Tokyo, 1960, pp. 781-797.
  8. Crandall, S. H. and Mark, W. D., Random Vibration inMechanical Systems, Academic Press, New York, 1963.
  9. Housner, G. W., “Intensity of ground motion duringstrong earthquake,” California Institute of Technology,Earthquake Research Laboratory, 1952.
  10. Abrahamson, N. and Silva, W., “Empirical responsespectral attenuation relations for shallow crustal earthquakes,”Seismological Research Letters, Vol. 68, No. 1,1997, pp. 94-127. https://doi.org/10.1785/gssrl.68.1.94
  11. Housner, G. W., “Measures of severity of earthquakeground shaking,” Proceedings U.S. National Conference onEarthquake Engineering, Ann Arbor, Michigan, 1975.
  12. Wang, J. N. and Kavazanjian, J. E., “A nonstationaryprobabilistic model for pore pressure development andsite response due to seismic excitation,” Report No. 84,The John A. Blume Earthquake Engineering Center,Stanford University, 1987.
  13. McCann, J. M. W., “RMS acceleration and duration ofstrong ground motion,” Technical Report No. 46, TheJohn A. Blume Earthquake Engineering Center, StanfordUniversity, 1980.
  14. Arias, A., “A measure of earthquake intensity,” SeismicDesign for Nuclear Power Plants, R. J. Hansen, ed.,MIT Press, Cambridge, Massachusetts, 1970, pp. 438-483.
  15. Kayen, R. E. and Mitchell, J. K, “Assessment of liquefactionpotential during earthquakes by Arias intensity,”Journal of Geotechnical and Geoenvironmental Engineering,ASCE, Vol. 123, No. 12, 1997, pp. 1162-1174. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:12(1162)
  16. Chang, M., Kwiatowski, H., Nau, R., Oliver, R., andPister, K., “ARMA models for earthquake groundmotions,” Earthquake Engineering and Structural DynamicsVol. 10, 1982, pp. 651-662. https://doi.org/10.1002/eqe.4290100503
  17. Shamaras, E., Shinozuka, M., and Tsurui, A., “ARMArepresentation of random processes,” Journal of EngineeringMechanics, ASCE, Vol. 111, No. 3, 1985, pp. 449-461. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:3(449)
  18. Gasparini, D. A. and Vanmarcke, E. H., “Evaluation ofseismic safety of buildings report No. 2: Simulatedearthquake motions compatible with prescribed responsespectra,” Publication No. R76-4, Department of CivilEngineering, Massachusetts Institute of Technology,Cambridge, Massachusetts, 1976.
  19. Rice, S. O., “Mathematical analysis of random noise,” Selected papers on noise and stochastic processes, N. Wax, ed., Dover Publications, New York, 1954, pp. 133-294.
  20. Yang, J. N., “On the normality and accuracy of simulatedrandom processes,” Journal of Sound and Vibration, Vol.26, No. 3, 1973, pp. 417-428. https://doi.org/10.1016/S0022-460X(73)80196-8
  21. Cooley, J. W. and Tukey, J. W., “An algorithm for themachine calculation of complex Fourier series,” Mathematicsof Computation, Vol. 19, 1965, pp. 297-301. https://doi.org/10.2307/2003354
  22. Iyengar, R. N. and Iyengar, K. T. S. R., “A nonstationaryrandom process model for earthquake accelerograms,”Bulletin of the Seismological Society of America, Vol. 59,No. 3, 1969, pp. 1163-1188.
  23. Lai, S. P., “Statistical characterization of strong groundmotions using power spectral density function,” Bulletinof the Seismological Society of America, Vol. 72, No. 1,1982, pp. 259-274.
  24. Saragoni, G. R. and Hart, G. C., “Simulation of artificialearthquakes,” Earthquake Engineering and Structural Dynamics,Vol. 2, 1974, pp. 249-267.
  25. Wung, C. D. and Der Kiureghian, A., “STOCAL-II:computer-assisted learning system for stochastic dynamicanalysis of structures, Part I -- theory and development,”Report No. UCB/SEMM-89/10, Department of CivilEngineering, University of California at Berkeley, Berkeley,California, 1989.
  26. Tung, A. T. Y., Kiremidjian, A. S., Wang, J. N., andKavazanjian, J. E., “Statistical parameters of AM andPSD functions for the generation of site-specific strongground motions,” Proceedings of the Tenth World Conferenceon Earthquake Engineering, 1992.
  27. Bolt, B. A., “Duration of strong ground motion,” Proceedingsof the Fourth World Conference on EarthquakeEngineering, Santiago, Chile, 1969, pp. 1304-1315.
  28. Trifunac, M. D. and Brady, A. G., “A study of theduration of strong earthquake ground motion,” Bulletinof the Seismological Society of America, Vol. 65, 1975, pp.581-626.
  29. Vanmarcke, E. H. and Lai, S. P., “Strong motionduration and RMS amplitude of earthquake records,”Bulletin of the Seismological Society of America, Vol. 70,1980, pp. 1293-1307.
  30. McCann, J. M. W. and Shah, H. C., “Determiningstrong motion duration of earthquakes,” Bulletin of theSeismological Society of America, Vol. 69, No. 4, 1979,pp. 1253-1265.
  31. Chang, F. K. and Krinitzsky, E. L., “Duration, spectralcontent, and predominant period of strong motion earthquakerecords form western United States,” MiscellaneousPaper 5-73-1, U. S. Army Corps of Engineers WaterwaysExperiment Station, Vicksburg, Mississippi, 1977.
  32. Dobry, R., Idriss, I. M., and Ng, E., “Duration characteristicsof Horizontal components of strong-motionearthquake records,” Bulletin of the Seismological Society ofAmerica, Vol. 68, No. 5, 1978, pp. 1487-1520.
  33. Abrahamson, N. and Silva, W., “Empirical groundmotion models,” Draft Report, Brookhaven National Laboratory, 1996.
  34. Newmark, N. M., Blume, J. A., and Kapur, K. K.,“Seismic design spectra for nuclear power plants,”Journal of Power Division, ASCE, Vol. 99, No. P02, 1973,pp. 287-303.
  35. Crandall, S. H., “First crossing probabilities of thelinear oscillator,” Journal of Sound and Vibration, Vol. 12,1970, pp. 285-300. https://doi.org/10.1016/0022-460X(70)90073-8
  36. Corotis, R., Vanmarcke, E. H., and Cornell, C. A.,“First passage of nonstationary random processes,”Journal of Engineering Mechanics, ASCE, Vol. 98, EM2,1972, pp. 401-414.
  37. Kavazanjian, J., E., Echezuria, H., and McCann, J. M.W., “RMS acceleration hazard for San Francisco,” SoilDynamics and Earthquake Engineering, Vol. 4, No. 3,1985, pp. 106-123. https://doi.org/10.1016/0261-7277(85)90005-1
  38. Abrahamson, N., “Draft hazard code documentationfor HAZ20A,” Personal Communication, 1999.
  39. Kim, J., “Probabilistic Approach to Evaluation of Earthquake-Induced Permanent Deformation of Slopes,” Ph.D.Dissertation, University of California at Berkeley,California, 2001.
  40. Kim, J. and Sitar, N. “Probabilistic evaluation ofseismically-induced permanent deformation of slopes,”Journal of Geotechnical and Geoenvironmental Engineering,ASCE, 2002, submitted for publication.