Abstract
Morphological analysis is the most widely used method for extracting nouns from Korean texts. For every Eojeol, in order to extract nouns from it, a morphological analyzer performs frequent dictionary lookup and applies many morphonological rules, therefore it requires many operations. Moreover, a morphological analyzer generates all the possible morphological interpretations (sequences of morphemes) of a given Eojeol, which may by unnecessary from the noun extraction`s point of view. To reduce unnecessary computation of morphological analysis from the noun extraction`s point of view, this paper proposes a method for Korean noun extraction considering noun occurrence characteristics. Noun patterns denote conditions on which nouns are included in an Eojeol or not, which are positive cues or negative cues, respectively. When using the exclusive information as the negative cues, it is possible to reduce the search space of morphological analysis by ignoring Eojeols not including nouns. Post-noun syllable sequences(PNSS) as the positive cues can simply extract nouns by checking the part of the Eojeol preceding the PNSS and can guess unknown nouns. In addition, morphonological information is used instead of many morphonological rules in order to recover the lexical form from its altered surface form. Experimental results show that the proposed method can speed up without losing accuracy compared with other systems based on morphological analysis.
형태소 분석을 한 후 명사를 추출하는 방법은 모든 어절에 대해 빈번한 사전 참조와 음운 복원을 위한 규칙 적용을 수행하므로 많은 연산을 필요로 하고, 중의성이 있는 어절에 대해 모든 가능한 분석결과를 생성하므로 명사 추출의 관점에서는 비효율적이다. 본 논문에서는 명사 추출의 관점에서 형태소 분석시 불필요한 연산을 줄이기 위해 명사 출현 특성을 고려하는 명사 추출 방법을 제안한다. 명사 출현 특성은 명사의 존재에 대한 긍정적 또는 부정적인 단서를 표현하는 한국어의 특성으로서, 배제 정보와 명사 접미 음절열이 있다. 배제 정보는 명사가 잃는 어절을 미리 배제하여 형태소 분석에 요구되는 탐색 공간을 줄이고. 명사 접미 음절열은 바로 알에 있는 병사를 검사함으로써 단순한 방법으로 명사를 추출하거나 미등록어를 인식하는 데에 사용한다. 또한 본 논문에서는 형태소 분석시 복잡한 음운 현상을 처리하기 위해 많은 음운 규칙을 적용하는 대신 음운 복인 정보를 사용하여 음운 현상을 처리한다. 실험 결과에 의하면 덕 방법은 기존의 형태소 분석 방법에 의한 명사 추출에 비해 정확도는 떨어지지 않으면서 수행 속도 면에서 매우 효율적임을 알 수 있다.