An Ontology-based Recommendation Agent for Personalized Web Navigation

개인화 된 웹 네비게이션을 위한 온톨로지 기반 추천 에이전트

  • 정현섭 (한양대학교 컴퓨터공학과) ;
  • 양재영 (한양대학교 컴퓨터공학과) ;
  • 최중민 (한양대학교 컴퓨터공학과)
  • Published : 2003.02.01

Abstract

Ontology is the artifacts for representing the truth or the states of objects by defining objects and their relations. In this paper, we propose an agent that classifies Web documents and provides personalized information towards user`s information needs using ontology. the agent uses ontology in which semantic relations on Web documents are represented in ta hierarchical form to classify Web documents. In this paper, ontology consists of concepts, features(describing concepts), relations(among concepts) and constraints(among elements in a feature). The agent can capture user's information needs efficiently by using ontology and assist Web navigation by using users profiles and the results of identification of semantic relations in Web documents. Also, the agent obtains Web documents by a look-ahead search and represents them as concepts, therefore users can understand them easily by receiving recommendations expressed in the form of high-level concepts.

온톨로지(ontology)란 객체(object)들과 이들 사이의 관계의 정의에 의하여 어떤 사실이나 상태를 표하는 지식 표현 방법이다. 본 논문에서는 온톨로지를 이용한 웹 문서 분류와 이를 바탕으로 사용자의 정보 요구에 대한 개인화 된 정보를 제공하는 에이전트를 제안한다. 에이전트는 웹 문서들이 가지는 의미 구조를 계층적 형태로 표현한 온톨로지를 바탕으로 웹 문서를 분류하게 된다. 본 논문에서 온톨로지는 개념(concept)과 개념에 대한 특징(feature), 개념간의 관계(relation) 그리고 문서 분류를 위한 제약조건(constraint)으로 이루어진다. 에이전트는 사용자 프로파일과 문서 식별의 결과를 이용하여 사용자의 정보 요구를 효율적으로 파악하고 사용자의 브라우징을 돕게된다. 또한 에이전트는 선행탐색(look-ahead)방법을 통해 문서를 획득 문서를 개념으로 표현함으로써 사용자가 좀더 이해하기 쉬운 상위 단계의 윈 문서를 추천하게 된다.

Keywords

References

  1. T. Joachims. D. Freitag, and T. Mitchell, Webwatcher: A Tour Guide for The World Wide Web, In IJCAI'97, pp.770-777, 1997
  2. M. Pazzani, J. Muramatsu and D. Billsus, 'Syskill & Webert: Identifying Interesting Web Sites,' In Proc. of 13th Narl. Conf. on Artificial Intelligence, pp.54-61,1996
  3. H. Lieberman. Letizia: An Agent that Assists Web Browsing. In IJCAI'95, pp.475-480, 1995
  4. L. Chen and K. Sycara, Webmate : A Personal Agent for Browsing and Searching, In Proc. of 2nd Intl.Conf. on Autonomous Agents, pp. 132-139, 1998
  5. B. Mobasher, H. Dai, T. Luo, Y. Sung , and J. Zhu, Integrating Web Usage and Content Mining for More Effective Personalization, In Proc. of First Intl. Conf. on E Commerce and Web Technologies (ECWeb2000), pp.165-176, 2000
  6. B. Mobasher. R. Cooley and J. Srivastave, Automatic Personalization Based on Web Usage Mining. Technical Report TR99010, Dept. of Computer Science, DePaul University, 1999
  7. J. Chaffee and S. Gauch, Personal Ontologies for Web Navigation, In Proc. 9th Intl. Conf. on Information and Knowledge Management(CIKM'00), pp.227-234, 2000
  8. J. Hendler, Agent and the Semantic Web, IEEE Intelligent Sysrems, 16(2), pp.30-37, 2001 https://doi.org/10.1109/5254.920597
  9. N. Guarina and P. Giaretta Ontologies and Knowledge Bases, In N. Mars(ed.) Towards Verg Large Knowledge Base, Amsterdam: IOS Press, pp.25-32, 1995
  10. N. Guarino, Formal Ontology in Information Systems, In Proc. of FOIS'98, IOS Press, pp.3-15, 1998
  11. N. Guarino, Information Extraction: A Multidisci plinary Approach to an Emerging Information Techonlogy, chapter Semantic Matching : Formal Ontological Distinctions for Information Organization, Extraction, and Integration, pp.139-170, Springer Verlag, 1998
  12. M. Genesereth and N. Nilsson, Logical foundation of Artificial Intelligence, Morgan Kaufmann, 1987
  13. H. Suryanto and P. Compton : Learning Classification Taxonomies from a Classification Knowledge Based System, Ontology Learning ECAI-2000 Workshop, 2000
  14. W. Koh and L. Mui, An Information Theoretic Approach to Ontology-based Interest Matching, In IJCAI'01 Workshop on Ontology Learning OL-2001, Seattle, August, 2001
  15. Y. Kalfoglou, J. Domingue, E. Motta, M. Vargas-Vera, and S. Buckingham Shum, My Planet: An Ontology-driven Web-based Personalised News Service, In Proc. of the IJCAI'01 workshop on Ontologies and Information Sharing, 2001
  16. USA today, http://www.usatoday.com, 2001
  17. T. Mitchell, Machine Learning, The MeGraw Hill Companies, Inc., 1997
  18. Yahoo!, http://www.yahoo.com, 2001
  19. R. Baeza Yates and B. Ribeiro, editors. Modern Information Retrieval, Addison Wesley, 1998
  20. R. Kosala and H. Blockeel, Web Mining Reseach: A Survey, SIGKDD Explorations, 2(1), pp.1-15, 2000 https://doi.org/10.1145/360402.360406