Abstract
Most of statistical data are generated by a set of dynamic, stochastic, and simultaneous relations. An important question is how to specify statistical models so that they are consistent with the dynamic feature of those data. A general hypothesis is that the lagged effect of a change in an explanatory variable is not felt all at once at a single point in time, but The impact is distributed over a number of future points in time. In other words, current control variables are determined by a function that can be reduced to a distributed lag function of past observations. It is possible to explain the relationship between variables in different points of time and to estimate the long-run impacts of a change in a variable on another if time lag series of explanatory variables are incorporated in the model specification. In this study, distributed lag structure is applied to the domestic stock market model to capture the dynamic response of the market by exogenous shocks. The Domestic market is found more responsive to the changes in foreign market factors both in the short and the long run.
서로 연관관계에 있는 실제의 통계자료들은 동태적, 확률적 동시발생적으로 유발되며, 이로 인해 한 자료의 변동이 다른 자료에 미치는 영향은 같은 기간 뿐 아니라 시차를 두고 여러 기간에 걸쳐 지속되며 조정되어 간다. 그러나 일반적인 선형, 비선형 통계모형을 사용하여 현실동향을 분석하는 경우 자료의 이러한 특성에서 오는 시차관계를 통상 무시함으로써 변수 사이의 관계는 같은 기간 내에 결정되어야 하는 제약이 가해지게 된다. 그 결과 시간이 흐름에 따라 이들의 관계가 변화하는 과정이나 한 변수의 변동이 다른 변수에 미치는 장기적 영향도 추정할 수 없을 뿐 아니라 현실여건의 변동이나 전개과정을 설명하는 데도 큰 결함을 갖게 된다. 시차관계가 존재하는 변수에 실제 여건에 합당한 시차구조가 설정되면 현실이 정확히 반영되고, 모형에 내재된 변수들의 장단기 변동상황과 동태적 적응과정이 파악됨과 동시에 다양한 분석이 가능해지므로 모형의 활용도는 높아지게 된다.